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Preface

The development of electronics and related technologies has had a major impact on
the customs of modern society for their key role in telecommunication and informa-
tion processing. Electronic technologies make use of active electronic components,
such as vacuum tubes, transistors, diodes, integrated circuits, optoelectronic and
magnetic devices, as well as associated passive electric components. The opera-
tion of all electronic components and devices is governed by the properties of the
constituent materials and the laws of physics.

This book is intended to be used as a text for a course on electronic materials
and devices, and taught for junior and senior undergraduate students in electrical,
electronic, and computer engineering, physics, and materials science. The initial
chapters present the basic concepts of waves and quantum mechanics at a level
accessible to students that have not had courses on electromagnetism and modern
physics. The book has an introductory character and does not go into the more
specific technical details of the devices and methods of materials manufacturing.
The emphasis is on the physical concepts of the properties of materials and the basic
principles of device operation.

The material is suitable for one or two traditional semesters of classes. Chap-
ters 1–3 provide the basic introduction of materials for electronics and the physical
concepts necessary to understand the phenomena underlying the operation of devices.
In this part, the wave concept is widely explored, since it plays a fundamental role
in quantum mechanics and, therefore, in the properties of electrons in the atoms
and ions. Chapter 4 is dedicated to the study of the main properties of electrons in
materials and therefore is also basic for the following chapters, devoted to specific
materials and devices.

Chapter 5 presents the main characteristics of semiconductors. Chapters 6 and
7 are dedicated to the principles of operation of devices manufactured with these
materials, namely diodes, transistors, integrated circuits, and related devices, which
today exist in a wide variety of types and categories. The junction diode and the
junction transistor are studied in greater detail, since their operation can be fully
deduced from the basic laws and equations presented in the initial chapters.

Chapter 8 is devoted to the basic properties of the interaction of light with matter
and a variety of devices used to convert light into electric current or vice versa. These
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devices are responsible for making optoelectronics feasible and its applications in
several areas of science, medicine, and engineering. In this category are photodetec-
tors, such as photodiodes and solar cells, light-emitting diodes (LED), and lasers.
The basic principles of semiconductor lasers and optical fibers are studied in more
detail, due to their importance in optical communications.

Chapter 9 is dedicated to magnetic materials and devices, which play a key role
in electronics and are not usually treated in introductory books. Special emphasis is
placed on magnetic recording processes, since they are very important in computers
and in countless applications of daily life. The basic concepts of spintronics are
also presented, since this area of physics and technology is becoming increasingly
important in several applications. Ferrite devices for use in microwave systems are
also addressed in this chapter.

Finally, Chapter 10 presents a variety of materials with specific applications, but
very important in the growing range of electronic devices. Among them are piezo-
electric materials, dielectrics, and electrets used in electronics and in photonics, as
well as materials employed in the manufacture of video displays, phosphorescent
ceramics, liquid crystals, and organic conductors. In the last section, basic properties
of the ever-exciting superconducting materials are emphasized. Notwithstanding the
long search for a higher transition temperature, the exotic superconductivity property
is bound for important real-world utilization, from Josephson junctions to maglev
trains, from transmission cables to microwave frequency mixers, from magnetoen-
cephalograms to MRI in medical applications, both resulting from the scientific
demand for high magnetic fields in NMR research, for instance.

I am pleased to thank the collaboration of several colleagues at the PhysicsDepart-
ment of Universidade Federal de Pernambuco and other Brazilian universities in
bringing out suggestions, reviewing some texts, and pointing mistakes in the orig-
inal Portuguese version. I am particularly grateful to Anderson Gomes, Antônio
Azevedo, Belita Koiller, Celso Melo, Cid Araújo, Fernando Machado, Fernando
Parisio, Ricardo Emmanuel de Souza, and Sergio Bampi. I have no words to express
my gratitude to my colleague Flávio Aguiar, for carefully reviewing the whole
manuscript and making many suggestions, and to Caio Nascimento for his work
on the figures. My research activities, and therefore the conditions for writing this
book, would not be possible without the financial support of CNPq, FINEP, CAPES,
FACEPE, and UFPE. I would like to thank in advance all those who, in the future,
send me criticisms and suggestions for improving the book.

I also express my deep gratitude to Leo and Elsa, my parents, who educated me
with love and always stimulated my studies, and to Cláudia, Isabel, and Marta, my
daughters, who as adults understood why I did not dedicate them more time when
they were children.

Finally, my deepest thanks go to Adélia, my wife, who has always encouraged
me in this endeavor, helped me to solve countless orthographic doubts, and followed
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with great interest each stage of the work on the three Portuguese editions of the
book and on this new one in English.

Recife, Brazil
October 2021

Sergio M. Rezende



About This Book

Introduction to Electronic Materials and Devices is intended to be used as a text
for a course on electronic materials and devices, and taught for junior and senior
undergraduate students in electrical, electronic, and computer engineering, physics,
and materials science. The initial chapters present the basic concepts of waves and
quantum mechanics at a level accessible to students that have not had courses on
electromagnetism and modern physics. The book has an introductory character and
does not go into the more specific technical details of the devices and methods of
materials manufacturing. The emphasis is on the physical concepts of the properties
of materials and the basic principles of device operation. The material is suitable
for one or two traditional semesters of classes. The first three chapters introduce the
basic introduction of materials for electronics and the physical concepts necessary to
understand the phenomena underlying the operation of devices. In this part, the wave
concept is widely explored, since it plays a fundamental role in quantum mechanics
and, therefore, in the properties of electrons in the atoms and ions. One chapter is
dedicated to the study of the main properties of electrons in materials and therefore is
also basic for the following chapters, devoted to specific materials and devices. More
specific chapters present the basic properties and conduction mechanisms in semi-
conductors and their use in diodes, transistors, and integrated circuits. One chapter is
devoted to optoelectronic and photonic devices, including the light-emitting diode,
solar cells, and various types of lasers. Another chapter is devoted to the magnetic
properties of materials and their applications in magnetic and spintronic devices.
The last chapter is dedicated to a variety of materials with specific applications in
the growing range of electronic devices, such as dielectric materials used in elec-
tronics and photonics, liquid crystals, and organic conductors used in video displays,
and superconducting materials. This breath of topics is not covered in any other
single textbook for undergraduate engineering and science students. End-of-chapter
problems are included.
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Chapter 1
Materials for Electronics

This first chapter presents the basic concepts that underly the formation of materials
and how the atoms and ions are arranged in solids. Initially we describe qualitatively
the various types of atomic bonding: ionic; covalent; molecular, or Van der Waals;
and metallic. Then we present the 14 crystal lattices in three dimensions and the
crystal structures of some important minerals and materials for electronics. The last
section is devoted to a brief description of some features and preparation methods
of important classes of materials that are employed in the fabrication of electronic
devices.

1.1 Electronics and Condensed Matter Physics

Electronicswas themost important technology of the twentieth century and continues
to be so in this century. Its history dates back to 1904, when John Fleming invented
the simplest vacuum tube, the diode, that has only two electrodes, the cathode and
the anode. When heated, the cathode emits electrons that are collected by the anode,
so that an electric current can flow in only one direction. Soon after, in 1907, Lee
De Forest invented the triode, a vacuum tube that has a metallic grid between the
cathode and the anode. In the triode, the electron flow from the cathode to the anode
is controlled by the voltage between the grid and the cathode, making possible signal
amplification. The origin of the name electronics lies in the fact that the operation
of vacuum tubes is based on the control of the electron flow.

The main product of electronics in the first half of the twentieth century was the
radio, which enabled the transmission of information at a distance and communica-
tion through voice and music. Later, the system for the transmission and reception of
moving images, the television, was developed. Then came computers and also a wide
variety of equipment for different purposes. However, electronics based on vacuum
tubes had major limitations and disadvantages. The vacuum tubes are large, fragile,
overheated, short-lived and expensive tomanufacture, in addition to several technical
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drawbacks. For this reason, since before the Second World War, a solid-state device
was sought that could replace the vacuum tubes in electronic equipment. The big step
in this direction was taken in 1947 by J. Bardeen, W. Brattain andW. Shockley, three
physicists at the Bell Telephone laboratories who studied properties of electronic
conduction in semiconductors. That year they invented a three-element device that
opened the possibility to control the electric current inside a piece of germanium,
a semiconductor material. The device was called transistor, a name resulting from
the contraction of the term transresistance, that had the potential of replacing the
triode vacuum tube. For their invention, Shockley, Bardeen, and Brattain received
the Physics Nobel Prize in 1954.

During the 1950s, the transistor was improved, becoming a reliable device, with
applications in radios, television sets, computers and the most diverse electronic
equipment and with increasingly lower manufacturing costs. Transistors revolution-
ized the field of electronics, and paved the way for smaller devices. In the 1960s
we witnessed the miniaturization of electronics, with the development of the inte-
grated circuit (IC) containing countless transistors and diodes, interconnected with
resistors and capacitors, made up in the same semiconductor chip. The fabrication
of integrated circuits with elements of dimensions on the order of a few microme-
ters gave rise to the technology of microelectronics. The increasing miniaturization
of components and the development of the metal–oxide–semiconductor field-effect
transistor (MOSFET) were essential for the birth of microcomputers. The production
of integrated circuits and microprocessors with larger number of increasingly faster
elements, together with the invention of devices for the visualization of information
andwith the developments in software engineering, led to the creation of awide range
of digital equipment that has produced a continuous evolution in electronics. This
resulted in a tremendous change in the customs of society, provided by modern
communication systems, the widespread use of computers, cell phones, tablets,
watches, appliances used in our daily life, automation of industrial production, among
others.

In addition to diodes, transistors, integrated circuits and microprocessors, whose
operation is based on the electronic transport properties of semiconductors, there
is a large number of other devices that give electronics a huge variety of applica-
tions. They are based on various properties of materials, electric conduction, optical,
magnetic, thermal, among others, that will be presented in this book. The develop-
ment of these devices was only possible thanks to the knowledge accumulated with
the research activities in Solid State Physics. This is the area of physics that inves-
tigates the properties and phenomena that occur in solid materials, and that gained
a great boost with the discovery of the transistor. Until the 1950s, work in this area
was concentrated on crystalline solids, that have constituent atoms or ions with a
periodic orderly arrangement. In these solids there are phenomena that do not exist
in amorphous materials. Furthermore, since they have a crystalline structure with
well-defined symmetry properties, many phenomena can be more easily interpreted
by the laws of physics.

The progress in experimental and theoretical research in Solid State Physics and
in Materials Science has made possible the discovery of more complex materials,
such as conducting polymers, special amorphous alloys, liquid crystals, thin films
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and multilayers, and the development of new devices based on their properties. With
broadened scope, the field of physics devoted to materials is now called Condensed
Matter Physics, and is considered one of the largest and most versatile fields of study
in physics, primarily due to the diversity of topics and phenomena that are available
to study. Over 40% of the physicists currently work in this field worldwide, with new
sub-fields of research continuing to emerge, driven by the discovery of new artificial
materials, new properties and new phenomena. These, in turn, open the potential
for the development of new devices that find applications in many technological
segments, and whose economic interest drives basic and applied research. However,
it was not only because of its technological importance that the new area developed
quickly. The wide variety of phenomena that electrons and nuclei collectively exhibit
in materials has given rise to exciting fundamental discoveries. This is one of the
reasons for the fact that about 40% of the Physics Nobel Prizes in the past 50 years
have been awarded to scientists working in this area.

The materials investigated in Condensed Matter Physics and used in electronic
devices are generally not found in nature. They are produced artificially from chem-
ical compounds with high degree of purity, through different physical chemical
processes. Materials fabrication techniques have become increasingly sophisticated,
making possible to obtain artificial structures not imaginable a few decades ago.
It is possible, for example, to use very thin film fabrication processes to deposit
individual atomic layers, one after the other, forming a multilayer or a crystalline
superlattice. In addition, lithographic techniques can be used to define structures with
nanometric lateral dimensions and desired shapes. The field of materials preparation
and processing is therefore essential for the research in Condensed Matter Physics
and Materials Science, as well as for the fabrication of electronic devices. In order
to understand the phenomena that occur in solids and the operation of devices it is
necessary to know several fundamental concepts that will be presented in the initial
chapters of this book. We shall start by discussing a basic question: why and how do
the atoms of the various elements bond together to form solid materials?

1.2 Atomic Bonding

Let us first consider the case of a simple solid, sodium chloride, NaCl. For reasons
known from chemistry, and which are explained in detail by quantum mechanics,
a chlorine atom, with its 17 electrons, tends to capture another extra electron to fill
its 3p electronic shell and become stable. On the other hand, a sodium atom with
11 electrons tends to lose its single electron in the 3s shell so that the two inner
shells form a closed nucleus. So, when a sodium atom is close to a chlorine atom,
it transfers its electron to the chlorine atom, giving rise to two ions with opposite
electric charges, which are attracted bymeans of the electrostatic interaction. In other
words, the chlorine and sodium ions close together form a system that has less energy
than if they are far apart. However, when the two ions are very close, the repulsion
between their outermost electrons causes the energy to increase, preventing further
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Fig. 1.1 Interaction energy
of a Na+ ion and a Cl− ion as
a function of the distance
between them

Na+ Cl-

Cl-Na+ 

approximation. Figure 1.1 shows the variation of the interaction energy between
the two ions as a function of the distance between them. When the ions are far
apart, the electrostatic energy decreases, in absolute value, with increasing distance
r, approximately as (1/r). On the other hand, when the ions are very close, the energy
grows exponentially as the distance decreases. Thus, there is a distance a at which the
energy is minimum and the system can be in stable equilibrium. A similar situation
occurs if there are 1023 sodium atoms “near” 1023 chlorine atoms, but now the ions
tend to form a three-dimensional system, in the form of a solid crystal. This type
of bonding is called ionic, and is the simplest to understand. There are three other
types of bonds between atoms in materials: covalent, molecular and metallic. All
of them result from the Coulomb interaction involving electrons and nuclei of the
atoms. The type of bonding determines some properties of the material, as briefly
presented below.

As we have seen, in ionic solids the bonding is due to the electrostatic attraction
between ions of opposite charges, as illustrated schematically in two dimensions (2D)
in Fig. 1.2a. This bond is very strong and therefore the melting point of the material
is high. In other words, it takes a great deal of thermal agitation energy for the atoms
to break loose of each other to form a liquid state. As electrons are strongly bound
to atoms, these crystals generally have small electric and thermal conductivities,
that is, they are good insulators. The absence of free electrons also results in good
optical transparency over a large range of the electromagnetic spectrum. Some typical
examples of ionic solids are alkaline halides (NaCl, KCl, NaBr, LiF, etc.), various
oxides, sulfides, selenides, tellurides, and other compounds.

In the covalent solids, valence electrons are shared between neighboring atoms, as
illustrated in Fig. 1.2b. In this case the attraction is due to the presence of electrons
between the atoms, which simultaneously attract neighboring atoms that are left
positive with their absence. Covalent solids generally have a lower melting point
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Fig. 1.2 Illustration in 2D of the main types of crystal bondings in solids. A Ionic; b covalent;
c molecular; and d metallic

than ionic ones, but have greater hardness. Some of the important covalent materials
are the semiconductors silicon, germanium, GaAs, InSb, GaN, etc.

The molecular bonding is much weaker than in the previous two cases. It is
an attractive interaction between two molecules that results in a stable association
in which the molecules are in close proximity to each other. It is also present in
materials with neutral atoms that have closed electron shells, mediated by Van der
Waals forces. These forces result from the attraction between electric dipoles formed
in the atoms by a small displacement of the electronic shells relative to the nuclei, as
in Fig. 1.2c. Solids with this type of bonding have very low melting point, generally
less than 10 K, as is the case of crystals of solidified gases, such as oxygen, nitrogen,
helium and other inert gases. As will be mentioned in Sect. 1.4.6, molecular bonding
is also important in layered materials.

In some aspects, in metals the bonding can be considered ionic. These materials
are formed by atoms that have few electrons outside their last filled shell and are
therefore weakly bound to the atomic nuclei. When put together, these atoms release
their last electrons that are free to move about, forming a “sea” of electrons. This
negative sea of electrons tends to hold positive ions together due to the electrostatic
attraction, as shown schematically in Fig. 1.2d. Thus, the bond is reasonably weak,
which results in relatively lowmelting point, highmalleability and ductility, and high
thermal and electric conductivities, which are characteristic features of metals.
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1.3 Crystalline Materials

Many materials used in the fabrication of electronic devices have the structure of
crystalline solids or crystals. A perfect crystal is one that has a regular and periodic
arrangement of atoms or ions, formed by the repetitive translation of a unit cell.
The regular ordering of atoms or ions is the arrangement that minimizes the total
electrostatic energy of the ensemble. For this reason, when a material is melted and
then cooled slowly, the atoms or ions search for the lowest energy positions and tend
to form a crystal.

Figure 1.3a shows the structure of a cesium chloride crystal. It is made of pairs of
Cs+ and Cl− ions, that form the base, associated with each point of a crystal space
lattice. The space lattice, also called Bravais lattice, is a mathematical abstraction,
made of repetitive translations of the points of a unit cell, defined by three unit
vectors, �a, �b, and �c, as in Fig. 1.3a. The lattice of cesium chloride is simple cubic,
and the base consists of a Cl− ion at position 000 and a Cs+ ion at position ½ ½
½, referred to the lengths of the unit vectors. Thus, the crystal structure of CsCl is
obtained by translations of the unit cell, shown in Fig. 1.3b. Notice that in the center
of the cube there is one ion of the base, but not a lattice point. For this reason the
lattice is simple cubic.

1.3.1 Crystal Lattices

Although the number of crystal structures is very large, there are only 14 different
types of Bravais lattices in three dimensions, that are shown in Fig. 1.4. The lattices

Fig. 1.3 a Crystal of cesium chloride, CsCl. The crystal lattice is simple cubic. The base consists
of a Cl− ion at position 000 and a Cs+ ion at position ½ ½ ½, referred to the length of the unit
vectors. Note that the ions are represented by small spheres to facilitate the visualization. b Unit
cell of CsCl



1.3 Crystalline Materials 7

Body-centered
cubic (I)

Face-centered
cubic (F)

Simple cubic (P)

Tetragonal P Tetragonal I

Orthorhombic P Orthorhombic C Orthorhombic I Orthorhombic F

Monoclinic P Monoclinic C Triclinic

Trigonal R Trigonal C, Hexagonal P

Fig. 1.4 Unit cells of the 14 crystal (Bravais) lattices in 3 dimensions



8 1 Materials for Electronics

Fig. 1.5 Unit cell and primitive vectors of the face-centered (fcc) and body-centered (bcc) cubic
lattices

are grouped into seven systems according to the type of the unit cell: cubic, tetragonal,
orthorhombic, monoclinic, triclinic, trigonal, and hexagonal. Figure 1.4 also shows
the relations between the angles α, β, γ , and between the lengths a, b, c of the edges
of the unit cell. The lengths a, b, c are the lattice parameters. The unit cells shown
in the figure are called conventional cells. They are the easiest to be viewed but not
necessarily the smallest that can be used to reproduce the lattice by its repetitive
translation. The smallest unit cell that reproduces the lattice is called primitive cell.
Figure 1.5 shows the primitive vectors �a′, �b′ and �c′ of the face-centered cubic lattice
(fcc) and body-centered cubic lattice (bcc).

The planes and axes that contain points of the crystalline lattice are represented
by three digits that characterize their coordinates, called Miller indices. In order to
obtain the Miller indices of a plane it is necessary first to determine its intersections
with the axes x, y, z of the unit cell. The intersections are then represented by numbers
p, q, r, expressing their coordinates pa, qb, rc in those axes. The Miller indices h,
k, l are the smallest integers in proportion to 1/p, 1/q, 1/r. To represent the plane,
the indices are placed in parentheses. The axis perpendicular to the plane (h k l) is
represented by [h k l].

Figure 1.6 shows the three most important planes and three main axes of a cubic
lattice. Note that the plane parallel to the z axis that intersects axes x and y at the
points x = a and y = a, respectively, is characterized by intersections p = 1, q = 1,
r = ∞. The inverses of these numbers give the Miller indices of the plane, which
are denoted by (110). Note that since the cubic lattice is invariant under rotations of
90° around the z axis, the plane (110) is equivalent to the planes (110), (110) and
(110), where the bar above the index indicates the intersection on the negative side
of the coordinate axis. These planes are also equivalent to the planes (101), (011) and
their equivalents with negative indices. The set of equivalent planes is represented
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Fig. 1.6 Illustration of the three main crystal symmetry planes and main axes of the cubic lattices

by the symbol {110}, while the set of axes that can be obtained from the axis [110]
by symmetry operations is represented by the symbol < 110 > .

1.3.2 Simple Crystalline Structures

In general, many different substances crystallize with the same crystalline structure.
Some structures are simple and are characteristic of certain well- known materials,
in general natural minerals. This section presents the main features of the crystal
structures of some important materials.

The structure of cesium chloride, CsCl, shown in Fig. 1.3, is characterized by a
simple cubic lattice with the base formed by two ions of opposite charges, Cl− at
position 000 and Cs+ at position ½ ½ ½. Note that it is sufficient to specify an ion
Cl− at the base because all eight ions at the vertices of the unit cell are equivalent,
that is, any of them can be obtained from the other by a translation by a unit vector.
Since only 1/8 of each Cl− ion is contained within the unit cell, for all purposes the
cell contains only one Cl− ion and one Cs+ ion. The CsCl lattice parameter is a =
4.11 Å. Other crystals with the same structure are TlBr (3.97 Å), CuZn (2.94 Å),
which is the type β brass, AgMg (3.28 Å), and BeCu (2.70 Å).

The structure of sodium chloride, NaCl, is shown in Fig. 1.7a. It is formed by a
face-centered cubic lattice with two ions at the base, one Na+ and one Cl−, separated
by one-half the body diagonal of the unit cell cube. Note that the primitive cell,
not shown in the figure, contains only one ion of each element. On the other hand,
the unit cell contains four ions of each element (1/2 of the six ions at the faces
and 1/8 of the eight ions on the vertices). Note also that the NaCl structure can
be seen as formed by two face-centered cubic lattices, one with Na+ ions and the
other with Cl− ions, displaced by one-half diagonal of the cube. The NaCl crystal
has lattice parameter a = 5.63 Å. Another crystal that has the NaCl structure is
PbS (5.92 Å), known as galena. It is a semiconductor material and was widely used
several decades ago to make detection diodes by metal contact in “galena radios”.
Today, PbS is used in detectors for infrared radiation. There are also several important
materials for electronics that have the NaCl structure, such as MgO (4.20 Å), widely
used in optical components, and NiO (4.18 Å), an antiferromagnetic material used in
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Fig. 1.7 a Crystal structure of sodium chloride, NaCl, formed by a face-centered cubic lattice with
two ions at the base, one Na+ and one Cl−, separated by one-half the body diagonal of the unit cell
cube. This structure can also be seen as formed by two face-centered cubic lattices, one with Na+

ions and the other with Cl− ions, displaced by one-half of the cube diagonal. b View of the NaCl
crystal, with the ions represented by spheres with sizes comparable to their distances

magnetic applications. Note that Fig. 1.7a is a simplified view of the NaCl structure,
with the ions represented by small spheres. Actually, since the last electronic shells
of neighboring ions are very close to each other, a more realistic view of the crystal
structure is that shown in Fig. 1.7b. The apparent radius of each ion is called ionic
radius. In the case of NaCl, the ionic radius of the Na+ ion is 1.220 Å and of the
Cl− ion is 1.595 Å. The sum of these two ionic radii is one-half the NaCl lattice
parameter (5.63 Å).

The crystal structure of cubic zinc sulfide, ZnS, called zinc-blende, also has a
face-centered cubic lattice, as shown in Fig. 1.8a. The base is formed by the atom of
one of the elements at position 000 and an atom of the other element at position ¼
¼ ¼. The structure can also be seen as formed by two face-centered cubic lattices,
one with Zn atoms and the other with S atoms, displaced from each other by one-
quarter of a body diagonal of the cube. Thus, as can be seen in Fig. 1.8a, each Zn
atom has four S neighbors, and vice-versa, with a tetrahedral covalent bond between
them. The ZnS lattice parameter is a = 5.41 Å. Other important semiconductors
that crystallize with the zinc-blende structure are formed by elements of groups III
and V of the periodic table and by elements of groups II and VI. Examples of III-V
semiconductors are GaAs (5.65 Å), AlAs (5.66 Å), and InSb (6.49 Å), and examples
of type II-VI semiconductors are CdS (5.82 Å) and CdTe (6.48 Å).

The last example of an important crystal structure is that of diamond. Its conven-
tional unit cell, shown in Fig. 1.8b, is the same as in ZnS, but with all atoms of
the same element. In the case of diamond, the element is carbon, C, with lattice
parameter a = 3.56 Å. The diamond structure is characterized by covalent tetrahe-
dral bonds between the neighbors. The important semiconductors silicon, Si (5.43Å),
and germanium, Ge (5.65 Å), also have crystals with this structure.
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Fig. 1.8 a Unit cell of zinc sulfide, ZnS. The crystal structure is formed by a face-centered cubic
lattice, having in the base the atom of one of the elements at position 000 and the atom of the other
element at position ¼ ¼ ¼. The structure can also be seen as formed by two face-centered cubic
lattices, one with Zn atoms and one with S atoms, displaced by one-quarter of the cube diagonal.
b Unit cell of the diamond crystal, formed by C atoms only, and also of the semiconductors Si and
Ge

1.4 Materials for Electronic Devices

Very often, books on Materials Science and Engineering classify materials in cate-
gories based on their mechanical properties. One common classification is: metals,
ceramics, polymers, and composites. Other books include the category of semi-
conductors due to their key role in electronics. Another classification of materials
used in electronics and adopted in this book is based on their main physical prop-
erties. The categories are: Metals, semiconductors, insulators, optoelectronic,
magnetic, dielectric, and superconductors. In the remainder of this chapter we
shall briefly present some characteristics of materials grouping them according to
their microstructure or preparation process, as follows: single crystals; ceramics
and glasses; polymers; liquid crystals; thin films and multilayers; graphene, carbon
nanotubes, and 2D materials.

1.4.1 Single Crystals

A single crystal, also called simply a crystal, is a material that presents crystalline
order throughout its volume, having typical dimensions that vary from a fewmillime-
ters to many centimeters. There are numerous methods for making single crystals,
each suitable for certain classes of materials. In general, the crystal is produced
from a liquid containing the elements that form the crystal structure. When a small
piece of the desired crystal, the seed, is placed in the solution, if the conditions of
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concentration and temperature are adequate, its volume increases slowly forming a
larger crystal. The essential factor in this method consists in allowing the atoms of
the solution to bond to the atoms of the seed slowly. This bonding occurs in posi-
tions that minimize the total binding energy, that turn out to be those of the crystal
structure. In some simple cases, one can use the liquid solution of the substance in a
certain solvent. This is the case of NaCl, that can be diluted with water. By placing
a small NaCl crystal in salted water, one can observe the crystal growth in a few
hours. Most methods for growing crystals employ a solution obtained by melting a
mixture containing the basic compounds of the desired crystal at high temperatures,
producing a molten solution. The heating of the mixture is done within a container,
called a crucible, using a resistive or radio frequency (RF) oven.

The two most used techniques for growing crystals from the molten solution are
the Bridgman and the Czochralsky methods. In the first, illustrated in Fig. 1.9, the
seed is placed at the bottom of the crucible containing the molten solution. The
temperature of the crucible is slowly decreased while maintaining a gradient like the
one in Fig. 1.9, so that the crystal grows from the bottom up. In the Czochralsky
method, illustrated in Fig. 1.10, the seed is placed at the lower end of a rod, touching
the surface of the molten solution. Then, as the rod is slowly pulled upwards and
rotated simultaneously, by controlling the temperature gradients, rate of pulling, and
speed of rotation, it is possible to extract a large, single-crystal, cylindrical ingot from
the melt. Figure 1.11 shows a cylindrical ingot of single-crystal silicon grown by the
Czochralsky method, with a diameter of 10.2 cm (4 inches). The discrete devices and
integrated circuits used in microelectronics are manufactured on Si wafers obtained
by cutting the rods, like the one in the figure. Currently, the microelectronics industry
uses Si ingots with diameters of 20 cm and 30 cm.

One important technique used to grow single crystal filmswith thickness typically
in the range 1–100 μm is the liquid phase epitaxy (LPE). It consists of inserting a
thick wafer of some single crystal material, the substrate, in a mixture or molten
solution having the elements of the desired film. The wafer can be static or made to
rotate slowly in the same plane. Then, atoms in the molten solution gradually stick
to the substrate, so that the single crystal film grows with one atomic layer after the

Fig. 1.9 Static Bridgman
method used to grow single
crystals. a Illustration of the
crucible with the seed and
molten solution, and the RF
coil used for heating.
b Temperature variation
along the axis of the crucible
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Fig. 1.10 Illustration of the Czochralsky method used to grow single crystals

other. Interestingly, if the wafer is made of the same material of the desired film, it
is possible to use mixtures of two or more substances heated at temperatures below
their melting points. This method was widely used to grow films of the important
semiconductor GaAs in the early days of studies of diode lasers and light emitting
diodes (LED). This is possible because the melting point of GaAs is 1238 °C, while
the mixture of GaAs with Ga has a quite lower melting point. If a GaAs seed layer
is immersed in a Ga + GaAs solution, melted at a temperature lower than 1238 °C,

Fig. 1.11 Single crystal ingot of Si with diameter 10.2 cm (4 inches) grown by the Czochralsky
method. The wafer in the pho to was obtained by cutting the rod with a diamond saw and processed
to make a solar cell (Courtesy of Heliodinâmica Ltd.)
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the seed layer remains solid while new crystalline layers are formed on top with
atoms of As and Ga of the mixture. Nowadays, nanometric films of GaAs and other
III-V and II-VI semiconductors are fabricated with thin film techniques presented in
Sect. 1.4.5.

1.4.2 Ceramics and Glasses

Theword ceramics comes from theGreek “keramos”,whichwas the nameof the clay
used to make jars in ancient Greece. It is currently used to designate a variety of non-
metallic inorganic compounds, usually hard, brittle and with a high melting point.
They can be an amorphous solid or polycrystalline. To understand the difference
between the two typeswewill consider the cases of silica (SiO2) and alumina (Al2O3).
The atomic bond in these materials has a mixed ionic and covalent character and,
depending on themethod of preparation, can result in amorphous or crystalline solids.
If the cooling of the molten solution is slow, the material tends to become crystalline.
In the case of silica, this occurs with a cubic or hexagonal lattice of oxygen atoms,
with the Si ions between them having tetrahedral bonds, as illustrated in Fig. 1.12a.
When crystallization is done from a seed, a single crystal of SiO2, called quartz, is
formed. Quartz is a natural mineral, abundant in some regions of the world, that is
actually used to make the Si ingots used in electronics. If there is no seed in the
preparation process, crystallization originates from many points in the material. In
this case, randomly oriented crystalline grains are formed, producing a polycrystal,
as illustrated in Fig. 1.12b. On the other hand, if the cooling is fast, the atoms will
not have time to find the lowest energy positions and a crystalline structure is not
formed. In this case, there is no long-range order and the material is amorphous,
with atomic bonds as shown in Fig. 1.12c for silica, which is also called fused quartz.
The case of Al2O3 is similar to that of silica. It can be found in the amorphous form,
called alumina, or in the form of a crystal, called sapphire.

Fig. 1.12 a 2D view of the atomic bonds and crystalline arrangement of quartz, SiO2. b Illustration
of a polycrystalline material. c Atomic bonds and arrangement in silica, which is amorphous SiO2
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Ceramics can also be prepared by sintering. In this process, the constituents of
the material in powder form are mixed and compacted to the desired final shape. The
material is heated to near the melting point and then cooled, resulting in a ceramic
made of polycrystalline grains with a strong adhesion to each other. This is the
process used to make ceramic objects of daily use, such as pitchers, adornments,
etc. When the raw material is of high quality and the processing is done under
very controlled conditions, the so-called advanced ceramics are obtained, which find
diverse applications in electronics and in other areas of technology. Currently it
is possible to manufacture particles with dimensions of tens of nanometers (1 nm
= 10−9 m) with great uniformity of sizes, which when compacted and thermally
processed result in ceramics with special properties for various applications.

Amorphous materials are also called glasses and are characterized by the absence
of a well-defined melting temperature. When a glass is heated to the melting temper-
ature, in contrast to crystals, it softens gradually to become a liquid without a sharp
transition from the solid phase to the liquid phase. In fact, a glass can be seen as a
liquid with very high viscosity, which, for practical purposes behaves as if the atoms
were frozen in disorder. From the point of view of electric conductivity, amorphous
materials, or glasses, can be metallic, insulating or semiconductors. In electronics
they find many applications with any of these properties.

1.4.3 Polymers

Polymers consist of long chainmolecular structures, usually organic, that result from
the chemical combination of a large number (typically thousands) of simpler units,
called monomers. The word mer originates from the Greek meros, which means
part. A single mer is a monomer, while a polymer is made of monomers repeated
on a regular or random manner. While natural polymers, such as rubber, have been
known since immemorial times, only in the twentieth century, with the development
of the chemical industry, it became possible to prepare large-scale synthetic polymers
with a large variety of properties. Not only changes in the chemical nature of the
monomers, but even simple structural differences in the type of chain organization,
can lead to molecules with profoundly different physical and chemical properties.
This is illustrated in Fig. 1.13 showing the chains of two widely used polymers:
polyethylene and polyvinyl chloride (PVC). Polyethylene consists ofmonomerswith
one carbon atom and two hydrogen atoms. Replacing a hydrogen atom in ethylene

Fig. 1.13 Chains of two
common polymers.
a Polyethylene. b Polyvinyl
chloride (PVC)

(a) (b)
H    H    H    H

H    H    H    H H    H    H    H

H    Cl   H    Cl
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with a chlorine atom results in PVC, a completely different material. This example
illustrates the enormous diversity of existing polymers.

The polymeric materials most used in electronics are “plastics” that serve as elec-
trical insulators for covering wires, for encapsulating devices and for manufacturing
parts with various functions. The intense research activities in the last decades has
led to the discovery of polymers that can transport electric current as in metals or
semiconductors, called conducting polymers. Some of them have optical properties
similar to those in semiconductors, so that they can be used to make light emitting
diodes or solar cells, with the advantage that a large number of cells can be fabri-
cated in a flexible plastic sheet. Section 10.3 presents devices made of polymers that
replace those made of traditional metals or semiconductors in some electronic and
optoelectronic applications.

1.4.4 Liquid Crystals

Liquid crystals are materials that have a molecular structure with characteristics
intermediate between the long-range orientational and positional order of crystals
and the disorder typical of liquids and gases. Liquid crystals also have properties
that are not found in liquids nor in solids, such as: formation of single crystals with
the application of electric fields; optical activity much greater than typical solids and
liquids, that are controllable by electric fields; large temperature sensitivity that can
result in changes in their colors.

There are two major classes of liquid crystals: lyotropic and thermotropic.
Lyotropic liquid crystals are generally obtained by dispersing a compound in a
solvent. This is the case of several systems of biological importance, such as
lipid-water, lipid-water-protein, etc. The liquid crystals relevant for electronics are
thermotropic. They are formed by long molecules, usually of organic compounds,
arranged in two types of structures, nematic or smectic. These structures are illus-
trated in Fig. 1.14, which also shows the random orientation of the molecules in
an isotropic liquid. In nematic liquid crystals the molecules have parallel or almost
parallel order, as in Fig. 1.14b. They are mobile in all three directions and therefore
have positional disorder. In smectic liquid crystals, the molecules are also oriented
parallel to each other, but have a structure stratified in layers. Within the same
layer, the molecules occupy random positions, maintaining the same distance to
the molecules of the neighboring layers. In smectic liquid crystals type A, the orien-
tation of the molecules is perpendicular to the plane of the layers, whereas in type C
they are tilted relative to the plane of the layers. In both the smectic A and smectic C
types, the molecules randomly diffuse within each plane. No positional order exists
within each plane.

Liquid crystals have wide application in electronics, especially for the manufac-
ture of displays known as LCD (Liquid CrystalDisplay). This application is based on
the fact that the orientation of the molecules can be controlled by applying an electric
field, making it possible to vary the amount of light transmitted or reflected by the
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Fig. 1.14 Illustration of the orientation of molecules in the following systems: a isotropic liquid;
b nematic liquid crystal; c smectic liquid crystal A; d smectic liquid crystal C

material. This can be done by means of low voltages and low power consumption,
giving LCD displays a great advantage over other types, as presented in Sect. 10.3.

1.4.5 Thin Films and Multilayers

Manymaterials used in electronic devices are manufactured in the form of thin films,
that is, layers with thicknesses that vary from few nanometers to tens of microme-
ters. The films aremadewithmetals, insulators, semiconductors, or superconductors,
depending on the desired application. They are used in numerous components, simple
ones such as resistors, capacitors, and metal contacts in semiconductor devices, to
sophisticated nanometric structures used in microelectronic, optoelectronic or spin-
tronic devices. Thin films can be prepared by several different methods, depending
on composition, structure, thickness and application. All of them are based on the
gradual deposition of atoms or molecules of the desired material on the surface of
another material that serves as support, called substrate. The most commonly used
methods are grouped in two major categories, physical vapor and chemical vapor.

The notable progress in vacuum techniques in the last decades hasmade it possible
to improve the deposition processes of very thin films. Currently, vacuum chambers
with volumes on the order of 1 m3 can be routinely evacuated to pressures as low as
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10−11 − 10−9 Torr (1 Torr = 1 mm Hg). This enables the preparation of thin films
by depositing individual layers of atoms or molecules, one on top of the other, using
several different techniques. In all techniques the processing is done in a high vacuum
chamber, and consists of three stages: in the first stage the substances that serve as
raw materials are broken down into neutral atoms, ions or molecules, through the
action of thermal sources, or a plasma, or a laser, or bombardment by accelerated
electrons or ions; in the second stage, the physical vapor formed by the fragments of
matter flows towards the substrate; finally, in the third stage, the fragments deposited
on the substrate interact physically and chemically with each other, nucleating and
forming larger portions ofmaterial, resulting in the desired film. Themain differences
between the different methods are in the first stage. The simplest method is thermal
evaporation, in which the original substance is heated at high temperature until it
evaporates. Heating is done by means of an electric current in a resistive metal that
withstands high temperatures, such as tungsten, to melt the material to be deposited.
This method is used to deposit simple films of metals or simple substances, to make
mirrors or metallic contacts, for example.

One of the most sophisticated techniques to fabricate very thin films, multilayers
and superlattices is the Molecular Beam Epitaxy (MBE), schematically illustrated
in Fig. 1.15. The substances of the elements that form the desired material are heated
separately in individual sources, inside a high vacuum chamber. Each source is made
of a closed crucible, containing a small hole at one end. As the substance in the source
is heated until it melts, it generates a vapor under pressure inside the crucible that
is ejected in the vacuum through the hole, producing an atomic or molecular beam,
which deposits on the substrate. Through the precise control of the evaporation rates
and themovement of the shutters of each source it is possible to fabricate high quality
crystalline films. With this method it is also possible to manufacture crystals with
abrupt changes in composition forming amultilayer, or superlattice.A systemof great

Fig. 1.15 Schematic illustration of the apparatus for molecular beam epitaxy (MBE), with the
sources of the elements used to fabricate multilayers of GaAs and (GaAl)As, doped with impurities
of Sn or Be
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Fig. 1.16 Illustration of two types of important multilayers used in electronics: a multilayer of
GaAs and (GaAl)As employed in semiconductor lasers. b Magnetic multilayer used in spin-valve
reading heads in magnetic recording and other spintronic devices

technological interest is that formed by GaAs and AlAs, used in the fabrication of
semiconductor lasers. The crystals of these substances have the ZnS crystal structure,
with very similar lattice parameters, a = 5.65 Å. Because of this, it is possible to
deposit epitaxially crystalline atomic layers of the ternary alloy Ga1−xAlxAs on a
single crystal substrate of GaAs, to artificially build layers, superlattices or “quantum
wells”, with chosen concentration x. Figure 1.16a illustrates amultilayer of GaAs and
the alloy (GaAl)As used in semiconductor lasers. Figure 1.16b illustrates a magnetic
multilayer, formed by several magnetic layers, intercalated by non-magnetic layers,
metallic or insulating, used in magnetic recording and spintronic devices, described
in Chap. 9.

Another important technique for the fabrication of thin films and multilayers
that is widely employed in research laboratories and in industrial installations is the
sputtering deposition. Themain components of the sputtering equipment, illustrated
in Fig. 1.17, are the vacuum chamber and the metallic supports of the substrate and
the targets. The targets are made of the raw materials from which the atoms are
pulled out to be deposited on the substrate. Before starting the deposition process,
the chamber is evacuated for several hours to very low pressure (10−11 − 10−8 torr),
in order to eliminate residual gases. Then a noble gas (Ar, Ne) is injected into the
chamber with a pressure of the order of 10−3 Torr, forming an inert atmosphere.
A high voltage of the order of a few kV is then applied between the substrate and
targets supports, ionizing the gas in the region and forming a plasma. The ions
in the plasma that are accelerated by the voltage gain enough energy to pull the
atoms or molecules from the target material producing a vapor that deposits on
the substrate. The process usually employs several targets mounted on a wheel that
can be rotated so as to have the substrate underneath a certain target during some
time. By depositing different materials successively, one can fabricate a multilayer.
Currently the sputtering systems have another important component, not shown in
Fig. 1.17, namely a set of permanent magnets that creates a nonuniform magnetic
field. Its purpose is to confine the plasma in the target region, so as to increase the
efficiency of the process, that is then called magnetron sputtering. The high applied
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Fig. 1.17 Schematic illustration of the main components of a sputtering deposition system

voltage can be DC, used to vaporize metals, or RF, suitable for insulating materials.
Recent improvements in sputtering deposition havemade this technique increasingly
powerful, contributing to spread its use in the processing of electronic and magnetic
devices, both in research laboratories and in industrial plants.

1.4.6 Graphene, Carbon Nanotubes, and 2D Materials

Graphene is one of the most unusual artificial forms of matter. It is formed by a single
plane of carbon atoms located at the vertices of the hexagons in a distribution that
resembles a honeycomb, shown in Fig. 1.18a.While the diamond crystal is formed by
carbon atoms in three dimensions, graphene is a carbon crystal in two dimensions.
The natural mineral graphite is the amorphous form of carbon. In graphene each
carbon atom is bonded to the other three atoms through covalent bonds, in which
three of the four electrons in the 2s and 2p shells participate. Since the covalent bonds
are very strong, graphene has a very good structural stability. The fourth electron
of each C atom can be above or below the plane and has an enormous degree of
freedom to move in two dimensions (2D). These almost free electrons can carry heat
and electric current. Hence, high quality graphene has a very strong structure, it is
lightweight, transparent and good conductor of heat and electricity. Suitably prepared
graphene behaves like a semiconductor, that under the action of an external electric
field has electrons and holes that move with average velocity proportional to the
field intensity. As we shall see in Sect. 5.4, the mobility, defined as the ratio between
the speed and the field intensity, is an important characteristic of semiconductors.
At room temperature, electrons in graphene have mobility around 130 and 25 times
larger than in silicon and gallium arsenide, respectively, which are the most used
materials in the semiconductor industry. These properties make graphene a very
promising material for the use in unique electronic devices.
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Although some of its properties had been theoretically predicted in the 1960s, only
in 2004Andre Geim andKonstantin Novoselov at the University ofManchester were
able to manufacture graphene samples and measure their exceptional properties.
This caused an explosion of research in graphene and in other carbon materials,
and Geim and Novoselov received the Physics Nobel Prize in 2010. The method
they used to make graphene is very simple, exfoliation of atomic layers of pure
carbon graphite with an adhesive tape and transfer to a SiO2 film substrate on a
silicon wafer. Graphene is currently fabricated in research laboratories by various
techniques, such as Chemical Vapor Deposition (CVD). This technique can be used
to manufacture a single graphene layer, or stacks of two or more layers with their
bond directions parallel or twisted at some angle. By changing the twist angle it is
possible to obtain unique electronic properties, such as superconductivity observed
at a ‘magic angle’. Research laboratories have used graphene in a variety of devices,
such as high frequency transistors, logic transistors, integrated circuits, solar cells,
optical modulators, etc., but to date they are not used in commercial products.

Another form of unusual arrangement of carbon atoms, discovered in the 1990s,
is that of nanotubes. These consist of rolled graphene strips, as shown in Fig. 1.18b.
Carbon nanotubes also have exceptional properties, characteristic of metals or semi-
conductors, depending on how these strips are arranged. Like graphene, carbon
nanotubes have been used to make experimental electronic devices in research
laboratories.

Several other materials can be made of a single atomic layer or stacked layers in
which the electric properties are governed by the 2D potential acting on the elec-
trons. These materials are made with atoms of the same element, like graphene,
or with atoms of different elements. One example of single element 2D material
is germanene, made with Ge atoms arranged in a buckled honeycomb structure,
consisting of two hexagonal sublattices displaced by 0.2 Å from each other. Another
example is silicene, made of Si atoms with a hexagonal honeycomb structure similar
to that of graphene. An important class of two-element 2D compounds is that of

Fig. 1.18 Illustrations of two unique crystalline arrangements of carbon atoms. a Graphene, with
the C atoms in a single plane, arranged as in a honeycomb. b Carbon nanotube, that can be seen as
formed by a rolled graphene strip (Wikipedia)
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transition metal dichalcogenides (TMD). One of the most studied is molybdenum
disulfide, MoS2, that has a unit layer structure consisting of one layer of Mo atoms
covalently bonded to two layers of S atoms. These unit layers can also be stacked
with bonding provided by the Van der Waals interaction. Since this interaction is
relatively weak, MoS2 layers can be obtained by exfoliation from the natural mineral
molybdenite.

Another class of materials with unique properties that have potential applica-
tions in electronic and spintronic devices is that of topological insulators. They are
materials that in the bulk have electronic energy bands with a gap, like an ordinary
insulator, but have conducting states on their edges or surfaces with energy bands
such that the electrons are free to move, like in a metal. The electrons at the edges
or surfaces are said to have topologically protected 2D gapless states, resulting in
very unique electronic and magnetic properties. Topological insulators are grouped
in several classes depending on their symmetry and electronic properties. Exam-
ples of well-studied materials are HgTe, CaAs, BixSb1−x, Bi2Se3, Sb2Te3, and α-Sn.
Actually, topological insulators are members of a more general family of material
systems where quantum effects remain manifest over a wider range of energy and
length scales. The so-called quantummaterials include superconductors, graphene,
topological insulators, Weyl semimetals, quantum spin liquids, and spin ices, among
others.

Problems

1.1 Calculate the angle between the direction [111] and the plane (001) in a cubic
crystal lattice.

1.2 Calculate the director cosines of the axis [122].
1.3 Show, with a clear drawing, which are the primitive vectors of a simple

tetragonal 3D lattice. Show why there is no face-centered tetragonal lattice.
1.4 Silicon, the most important semiconductor in electronics, crystallizes in the

diamond structure, whose unit cell is shown in Fig. 1.8. At room temperature
the lattice parameter is 5.42 Å. Since Si belongs to group IV of the periodic
table, its atom has four valence electrons. Calculate the total number of Si
valence electrons per unit volume, in cm−3.

1.5 Like Si, germanium also crystallizes in the diamond structure, with a lattice
parameter of 5.65 Å. Knowing that the atomic mass of Ge is 72.59 (referred
to the mass of H), calculate the specific mass of Ge in g/cm3 and compare it
with the value at the table in Appendix C.

1.6 The alloy AlxGa1−x As is an important semiconductor used to manufacture
optoelectronic devices. In the crystalline phase, it has the crystal structure of
GaAs, in which Ga atoms in a fraction x are randomly replaced by Al atoms.
Knowing that GaAs and AlAs crystallize in the ZnS structure, as in Fig. 1.8a,
calculate the number of atoms per cm3 and the specific mass of Al0.3Ga0.7 As.

1.7 A mathematical model for the total energy of an ionic bond crystal lattice is
U = N (γ e−R/ρ − αq2/R), where 2N is the number of ions in the lattice, q is
the ionic charge, γ , ρ, and α are constants that depend on the crystal structure
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and the constituent atoms, andR is the distance between two nearest neighbors.
For NaCl, which crystallizes in the fcc structure of Fig. 1.7, γ = 1.05× 10−15

J, ρ = 0.321 Å, and α = 1.747/4πε0.

(a) Make a plot of the two terms in the expression of the energy permolecule,
U/N, as a function of distance R, and interpret the meaning of each term.
Use a computer to make a nice quantitative plot. Note that the second
term in the equation, which results from the attraction between the two
ions with opposite charges, tends to −∞ at R = 0. Actually, the energy
expression is not valid for R = 0, because the ions are not point charges.
To avoid the divergence of the second term as R → 0, the suggestion is
to consider the energy constant for R ≤ 1 Å and equal to the value at
R = 1 Å.

(b) Make a plot of the sum of the two terms, that is, the energyU/N. Sugges-
tion: use for the horizontal axis the range 0–10 Å, and for the vertical
axis a scale in units of joule divided by a power of 10, convenient to
show the minimum energy, as in Fig. 1.1.

(c) Calculate the values of the equilibrium distance R0 and the lattice
parameter of the NaCl crystal. Compare the latter value with the one
given in the text.

(d) Calculate the energy per molecule needed to dissolve the crystal, that is,
so that the distance between neighbors is infinite.

1.8 A single crystal film of Fe is grown on the plane (100) with a certain deposition
technique, at a rate of 1.4 Å per second. Knowing that Fe crystallizes in the
bcc structure, with a lattice parameter of 2.8 Å, calculate the number of atoms
deposited during 20 s on a substrate in the form of a disk, with diameter 1.0 cm.
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Chapter 2
Waves and Particles in Matter

The phenomenon of wave propagation plays an essential role in electronics and in
condensed matter physics. In electronics, a very important use of electromagnetic
waves in several frequency ranges is to carry audio, video, and data signals through
cables, optical fibers, and in free space. These applications are the subject of books on
electromagnetics. Here we concentrate on waves that propagate inside the materials
and are at the root of several electronic phenomena. In this chapter we initially briefly
review the properties of electromagnetic waves and then treat the vibrations of atoms
in the crystal lattice in the form of elastic waves. Then we describe the photoelectric
effect that one century ago revealed the quantization of light waves and launched
the idea of the wave-particle duality of electrons. This discovery opened the path
to the development of quantum mechanics that is key for the understanding of the
functioning of electronic devices.

2.1 Electromagnetic Waves

To introduce some important concepts in wave propagation, we start this chapter
by reviewing the main characteristics of electromagnetic waves. The evolution of
electromagnetic fields in space and time is described by Maxwell’s equations,

∇ · �D = ρ, (2.1)

∇ · �B = 0, (2.2)

∇ × �E = −∂ �B
∂t

, (2.3)

∇ × �H = �J + ∂ �D
∂t

, (2.4)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. M. Rezende, Introduction to Electronic Materials and Devices,
https://doi.org/10.1007/978-3-030-81772-5_2

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81772-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-81772-5_2


26 2 Waves and Particles in Matter

where �E and �H are the electric and magnetic field vectors, respectively, �B is the
magnetic induction vector, �D is the electric displacement vector, ρ is the free charge
density, and �J is the electric current density. In a linear and isotropic material,
�D = ε �E and �B = μ �H , where ε is the electric permittivity and μ is the magnetic
permeability. If the material is insulating and has no free charges, ρ = 0 and �J = 0.
In these conditions, replacing (2.4) in (2.3) and using (2.1), with known relations
between differential operators, we obtain the equation that describes the evolution
of the electric field (Problem 2.1),

∇2 �E(�r , t) − με
∂2 �E(�r , t)

∂t2
= 0. (2.5)

This is the wave equation for a vector field in three dimensions. It relates the
spatial variation of the field to its temporal variation. For plane waves propagating
in the direction of the x-axis of a coordinate system, Eq. (2.5) reduces to

∂2 �E(x, t)

∂t2
− 1

ν2

∂2 �E(x, t)

∂t2
= 0, (2.6)

where ν = 1/
√

με. One solution of Eq. (2.6) is (Problem 2.3),

�E(x, t) = �E0 cos(k x − ω t), (2.7)

where �E0 is a constant vector. Substitution in (2.6) shows that (2.7) is a solution if
ω = k ν. Using (2.1) it can be shown that �E0 is necessarily perpendicular to the
direction of propagation x̂ . Substituting Eq. (2.7) in (2.3) and using (2.2) we obtain
the solution for the magnetic field

�H(x, t) = �H0 cos(k x − ω t), (2.8)

where �H0 is perpendicular to the field �E0 and to the propagation direction x̂ , and the
two field amplitudes are related by E0 = √

μ/ε H0. Equations (2.7) and (2.8) show
that at any point in space, with coordinate x1, the fields �E and �H vary harmonically
in time with angular frequency ω. This can be written as ω = 2π ν, where ν = 1/T
is the frequency and T is the period of the oscillation. Equations (2.7) and (2.8) show
that both fields �E and �H have the same behavior at all points in the plane x = x1.
For this reason, the planes perpendicular to the propagation axis are called phase
planes. The vector perpendicular to these planes, �k = x̂ k, is the wave vector, and
its interpretation is linked to the spatial behavior of the wave. To understand this,
consider the variation of �E , or �H , in space at some instant t. As shown in Fig. 2.1,
the field varies sinusoidally along the direction of propagation, having the phase
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repeated at each distance λ, calledwavelength. Since the argument kx corresponding
to a complete period is 2π, the relation between k and λ is

λ = 2π

k
. (2.9)

The spatial variation of the field at a later time t + 	t is given by the same wave
function shifted in the coordinate x by a distance	x = ω 	t/k, as in Fig. 2.1. Then,
as time goes on, the fields �E and �H vary as if the wave function translates along the
positive x axis, with speed 	x/	t = ω /k. This ratio is called the phase velocity
of the wave vp, which in this case is

vP = ω

k
= c

n
, (2.10)

where n = c
√

με is the index of refraction of the material, c = 1/
√

μ0ε0 is the phase
velocity in vacuum, which is the speed of light, given approximately by c = 3×108

m/s. It is not difficult to see that if the wave propagates in an arbitrary direction, the
wavevector �k is parallel to the direction of propagation, that is perpendicular to the
phase planes, with modulus related to the wavelength by Eq. (2.9). In this general
case, it can be shown that the solutions of Eq. (2.5) are given by

�E(�r , t) = �E0 cos(�k · �r − ω t + φ), (2.11)

�H(�r , t) = �H0 cos(�k · �r − ω t + φ), (2.12)

where

�H0 =
√

ε/μ

k
�k × �E0. (2.13)

Fig. 2.1 Variation of the
electric field intensity in
space at two instants of time,
t and t + 	t
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Fig. 2.2 Properties of an electromagneticwave propagating in a generic direction in space.aVectors
�E0, �H0, and �k in space. b Phase planes of the wave at a certain instant. The vectors in the planes
represent the electric field. The distance between two consecutive planes at which the fields have
the same phase is equal to the wavelength λ

In addition to the harmonic form (2.11), it is also very useful to represent the fields
in complex form, using Euler’s identity eiθ = cos θ + i sin θ . Thus, the electric field
of Eq. (2.11) can be written as

�E(�r , t) = Re[ �E0 e
i(�k·�r−ω t+φ)]. (2.14)

This representation of time-harmonic fields is very useful for calculating products
or divisions of quantities because the phase angles in the exponential functions simply
add or subtract. Figure 2.2 shows the phase planes and the electric and magnetic
fields of a wave propagating in a generic direction. The function ω(k) is called
dispersion relation, and it contains important information about the behavior of
the waves. One of them is the phase velocity vp = ω/k. As we have seen, in the
case of electromagnetic waves, ω(k) = ck/n, that is, the relation is linear, as shown
in Fig. 2.3. For other types of waves in solids, however, this relation is a more
complicated function of k. In the next section, we will see, for example, that elastic
waves in solids have a nonlinear dispersion relation.

One way to generate electromagnetic waves is through moving electric charges.
Harmonic waves of type (2.11) result from charges in oscillatory motion, or alter-
nating currents (AC). The frequency of the motion, or the current, determines the
frequency of thewave and therefore the type of radiation that is produced.ACcurrents
with frequency in the range of 100 kHz (105 Hz) to 100 MHz (108 Hz), generated
by transistor or vacuum tube oscillators, produce waves that are used to carry audio
signals, called radio waves. The range from just below 100 MHz to 1000 MHz, or
1 GHz (109 Hz), is used to carry television signals. During the 1990s, there was a
great evolution in mobile telephony, which started using frequencies in the range
of hundreds of MHz, and nowadays uses a few GHz, in the microwave region. The
various ranges of the electromagnetic spectrum are illustrated in Fig. 2.4, by means
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Fig. 2.3 Dispersion relation of electromagnetic waves in an isotropic, homogeneous, and linear
medium

of logarithmic scales of wavelength λ in vacuum, the corresponding frequency ν,
and energy E (this will be defined in Sect. 2.3). The radiation in the microwave
range (1 GHz–300 GHz) is also produced by vacuum tube or transistor oscillators.
In the infrared, visible and ultraviolet regions, the radiation is produced by lamps
of incandescent filaments, by atomic transitions in electric discharge lamps, or gas

Fig. 2.4 Illustration of the electromagnetic spectrum in units of wavelength λ, frequency ν, and
energy E (in eV) (courtesy of Lightcolourvision.org)
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lasers, and also by electronic transitions in different materials or in semiconductor
diodes. The visible region of the spectrum is shown in an expanded scale on the left
side of Fig. 2.4.

The wave function described by Eq. (2.11) represents an electric field that fills
the entire space, which, of course, represents an unreal situation. Despite this, it is
very important in physics for several reasons. One is that any variation of the electric
field that occurs in practice can be decomposed into a sum of plane waves of the
type (2.11), using the Fourier transform technique. The Fourier transform allows
to decompose any form of variation into plane waves of different frequencies and
wave vectors. For example, let us consider an electric field that varies only in the x
direction. At a given instant, say t = 0, we can write this field as

�E(x, 0) =
∞∫

−∞

�Ek e
ikx dk, (2.15)

where

�Ek =
∞∫

−∞

�E(x, 0) e−ikx dx . (2.16)

Equation (2.15) means that the field is a superposition of several plane waves,
each characterized by a wave vector �k = x̂ k and amplitude �Ek . The value of �Ek is
given by the Fourier transform (2.16). Let us consider the case of an electromagnetic
field confined to a small region of space, as shown in Fig. 2.5a, at a time t = 0.
As time goes on, this pulse propagates in space. It can be shown that the Fourier
transform of the wave packet also has the shape of a pulse, shown in Fig. 2.5b. In
other words, the superposition of several plane waves, with wave vectors close to k0
and with amplitude of the type represented in Fig. 2.5b, reproduces a spatial variation

Fig. 2.5 a Electric field in an electromagnetic wave pulse in space. b Amplitude of the Fourier
transform of the field pulse in (a)
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in the shape of the pulse in Fig. 2.5a. It can also be shown that as time evolves, the
field pulse propagates with the group velocity, given by

vg = ∂ω

∂k

∣∣∣∣
k0

. (2.17)

This result is valid for any type of wave. In the case of electromagnetic waves
in a vacuum or in isotropic, linear and homogeneous media, the group velocity is
equal to the phase velocity (Problem 2.4). However, in other situations like the ones
we will find later, this does not happen, the velocity of pulse propagation is different
than the phase velocity.

2.2 Elastic Waves in Solids

In this section we study some properties of the simplest type of waves in crystals, the
waves of lattice vibrations, called elastic waves. One of the reasons for the simplicity
of this phenomenon is that its basic properties can be describedwith classical physics,
since the atoms that form the crystal structure are relatively heavy.

The main properties of the crystal vibrations can be studied considering initially
the simple case of two identical atoms, bound as explained in Sect. 1.2. Classically,
in equilibrium, the distance between the two atoms corresponds to the minimum of
the interaction energy, as illustrated in Fig. 2.6. Actually, this situation only occurs
at a temperature of 0 K, i.e., in the absence thermal activation forces. In solids the
typical equilibrium distance is a few Å. When the atoms are displaced from their
equilibrium positions, they tend to oscillate about it due to the restoring forces. For
small deviations, the variation of the interaction energy can be approximated by
a parabolic well, so that the motion of the atoms is that of a harmonic oscillator.

Fig. 2.6 a Effective interaction energy between two bound ions. The dashed curve represents a
parabolic approximation for small deviations around the equilibriumdistance a.bEquivalent system
in the vicinity of x = a
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Considering u = x − a the deviation around the equilibrium distance, the first terms
of the energy expansion in a Taylor series are

V (u) = V (0) + dV

du

∣∣∣∣
0

u + 1

2

d2V

du2

∣∣∣∣
0

u2 + ..... (2.18)

In equilibrium, the force of interaction between the two atoms is zero, so that
dV/du|0 = 0. Thus, around the equilibrium we can write the energy as

V (u) ≈ V (0) + 1

2
C u2 (2.19)

where C = d2V/du2
∣∣
0 is a constant characteristic of the atomic bonding. In

this approximation, the interaction force between the atoms is proportional to the
deviation from equilibrium

F(u) = −dV

du
= −C u, (2.20)

which is the same as in a simple harmonic oscillator. This result shows that two atoms
bound by the electrostatic interaction behave like two masses connected by a spring.

In a crystal at T = 0, and without external disturbances, the atoms, or ions, are at
their equilibrium positions. As the crystal temperature is increased, the atoms vibrate
with increasing amplitude. This vibration is incoherent, in the sense that the motion
of one atom has no correlation with that of another atom. However, the collective
vibration of the atoms can be seen as a superposition of waves. In other words, the
excitations of a crystal have a wave character. These waves of crystal vibrations
are called elastic waves. The vibrations of a crystal with one atom in the primitive
cell can be modelled by the motion of identical atoms in a linear infinite chain, as
illustrated in Fig. 2.7. Consider a simplified model of the crystal lattice consisting
of atoms with massM, connected by springs with elastic constant C, as in Fig. 2.7a.
Denoting by un the displacement of the nth-atom from its equilibrium position along
the chain, since the interaction force between two atoms is given by Eq. (2.20), the
force on the nth-atom exerted by its two neighbors is

Fn = C [(un+1 − un) − (un − un−1)] = C (un+1 − 2un + un−1). (2.21)

With Newton’s law we can write the equation of motion for the atoms as

M
d2un
dt2

≡ M ün = C (un+1 − 2un + un−1). (2.22)

As expected, themotion of the nth-atom depends on themotion of the atoms n±1,
which in turn depend on the atoms n ± 2, and so on. Thus, the motion of the chain is



2.2 Elastic Waves in Solids 33

Fig. 2.7 aMonoatomic chain model in equilibrium. b Displacements of the atoms in the presence
of a longitudinal vibration wave. c Displacements in a transverse wave

a collective one, described by an infinite number of coupled equations. To solve the
system of equations, we use separation of variables and write the possible solution
for un(x, t) in the form of a wave

un(x, t) = uk(t) e
ikx . (2.23)

Substituting this function in the equation of motion (2.22), and considering that
the equilibrium coordinate of the nth-atom is x = na, we obtain

M ük = Cuk(e
ika − 2 + e−ika) = 2C uk(cos ka − 1). (2.24)

Thus, we obtain only one equation for the time dependence of the variable uk(t).
Due to the collective nature of the motion, the variation in space is contained in
Eq. (2.23). Note that (2.24) is the equation for a simple harmonic oscillator, whose
solution is

uk(t) = Ae−iωk t . (2.25)

Substituting (2.25) in (2.24) we obtain the oscillation frequency of the chain as a
function of the wave number

ωk =
(
2C

M

)1/2

(1 − cos ka)1/2. (2.26)

This result means that, when excited externally, the atoms in the chain oscillate
collectively with frequency ωk , in the form of elastic waves. The wave illustrated in
Fig. 2.7b is called longitudinal, because the displacements of the atoms have the same
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Fig. 2.8 Dispersion relation of elastic waves in a linear monoatomic chain

direction of the wave propagation. A similar calculation can be done for displace-
ments perpendicular to the chain direction. In this case one obtains the equations for
transverse waves, whose mode of vibration is illustrated in Fig. 2.7c.

Equation (2.26) is the dispersion relation of longitudinal elastic waves in the
linear monoatomic chain. Since this relation is periodic in k and ωk = ω−k , we will
only consider the values of ωk between k = 0 and k = π /a, as in Fig. 2.8. This range
of wavenumber contains all necessary information about ωk . The region − π /a < k
< π /a is called the first Brillouin Zone of wave vector space.

Note that in (2.26), ka represents the phase angle between the motions of two
neighboring atoms. For long wavelength waves, i.e. for λ � a, this angle is small
and we can use the approximation cos ka ≈ 1 − (ka)2/2, so that the dispersion
relation becomes

ωk = √
C/M ka. (2.27)

Hence, for ka 	 1 the dispersion relation is approximately linear, like in electro-
magnetic waves. In this case the phase and group velocities of the wave are equal,
given by

v = √
C/M a. (2.28)

In general, this velocity is on the order of 104 m/s, that is, 104 times smaller than
the speed of light. For long wavelength waves we can approximate the displacement
function by a continuous function in x, u(x, t). In this case, it is possible to show that
the equation of u(x, t) is equal to the wave equation for the electric field, Eq. (2.6)
(Problem 2.5). On the other hand, when the wavelength is small, the discrete nature
of the atomic chain becomes important. The wave with λ = 2a has the maximum
vibration frequency. Using ka = π in Eq. (2.26) we see that the maximum value of ω
is given by

√
4C/M . The value of this frequency varies from one material to another

and is in the range of 1–10 THz (1 THz = 1012 Hz), which corresponds to the far
infrared region of the electromagnetic spectrum (Problem 2.6).

In a 3D crystal there are two facts that make the problem of elastic waves more
complex: the first is that the atoms, or ions, interact with their neighbors in three
dimensions, generally with different elastic constants; the second is that the crystals
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Fig. 2.9 a Illustration of a linear chainwith twodifferent atoms, or ions, in equilibrium.bDispersion
relation of elastic waves in the diatomic chain with acoustic and optical branches

usually contain different atoms or ions. In the case of cubic crystals with one atom
per primitive cell, for waves propagating along the [100], [110], or [111] axes, the
equations are basically the same as in the 1D chain. This is so because entire planes
of atoms move in phase, with displacements either parallel or perpendicular to the
propagation direction. Thus, the displacement of the nth plane can be described by
a single variable un, just as in the case of the linear chain.

In the case the crystal is made of atoms, or ions, of different elements, the waves
have new characteristics, which can also be qualitatively explained assuming a 1D
model. Consider a linear chain with two types of atoms, with masses M1 and M2,
in an alternating arrangement, as in Fig. 2.9a. Then, the motions of the atoms are
described by two equations of the form Eq. (2.22), instead of just one, as in the case
of identical atoms. We will then have two solutions for the vibration frequencies
and, consequently, two branches in the dispersion relation, qualitatively shown in
Fig. 2.9b. In this case, the possible vibration frequencies of the system form two
bands, defined by the two branches of the dispersion relation. Between them there is
a forbidden band, whose width depends on the difference between the masses. When
the two masses are equal, the forbidden band disappears, that is, the lower branch in
the region 0 < k < π /2a and the upper branch in the region π /2a < k < π /a make up
the dispersion relation of the monoatomic chain of Fig. 2.8.

In the so-called acoustic modes, with frequencies given by the lower branch of
Fig. 2.9b, a wave with ka 	 1 has two neighboring atoms moving in phase. In the
optical modes (upper branch in Fig. 2.9b), a wave with ka 	 1 has two neighboring
atoms moving in opposite phases. Waves in the acoustic branch can be excited by
forces that make neighboring atoms move in the same direction, as in a sound wave
(hence its name, acoustic). On the other hand, waves in the optical branch are created
when the excitation produces opposite motions of neighbors, as is the case of the
electric field of infrared light acting on neighboring ions of opposite charges (hence
its name, optical).

The complexity arising from the 3D character of the crystal results in the existence
of a larger number of degrees of freedom in the system. In this case, the displacement
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Fig. 2.10 Dispersion
relations for elastic waves in
a diatomic cubic crystal,
with wavevector in the
direction of one main axis (L
= longitudinal, T =
transverse, O = optical, and
A = acoustic)

of an atom from its equilibrium position �r is characterized by a vector �R(�r , t).
Solutions of the general equations of motion lead to

�Rλ(�r , t) = Re[Ak e
i(�k·�r−ωλk t)], (2.29)

where λ is an index that represents the type of vibration and the direction of displace-
ment �Rλ, that is, it expresses the polarization of the wave and its type (optical or
acoustic). For a given direction of the wavevector �k there are three polarizations for
each type of wave. For particular directions we can have one longitudinal and two
transverse waves. The frequency ωλk depends on k and the type of wave. Figure 2.10
illustrates typical shapes of dispersion relations for elastic waves in a cubic crystal
with two different atoms or ions per unit cell.

2.3 Photoelectric Effect: Waves and Particles

At the end of the nineteenth century, the first evidence emerged that, in some situa-
tions, an electromagnetic wave behaved with typical characteristics of particles. In
1886–87, Heinrich Hertz carried out several experiments that confirmed the exis-
tence of electromagnetic waves and Maxwell’s theory. In one of these experiments,
he observed that an electric discharge between two electrodes occurred more easily
when one of the electrodes was illuminated with ultraviolet light. Later, Lenard
showed that the discharge occurred more easily because the ultraviolet light facili-
tates the emission of electrons from the cathode surface. The ejection of electrons
from a surface by the action of light was later called the photoelectric effect.

Figure 2.11 shows the basic apparatus used to study the photoelectric effect. It
consists of an evacuated glass tube, with a flat quartz “window” through which the
incident light passes. Monochromatic light is shed on the metal plate of the cathode
C, causing it to release electrons. These so-called photoelectrons are attracted to the
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Fig. 2.11 Illustration of the
apparatus used by Millikan
to study the photoelectric
effect

metal surface of anode A by means of the electric field due to a potential difference
V between the two electrodes, producing an electric current that is measured by
the microammeter μA. In a typical experiment, the current variation is measured
as a function of the voltage V, which can be varied by means of a potentiometer.
Such apparatus was used in 1914 by Robert Millikan in his pioneering studies of the
photoelectric effect, for which he received the Physics Nobel Prize in 1923.

One of the measurements of Millikan is shown in Fig. 2.12. It demonstrates that
the variation of the photoelectric current I with the applied voltage V depends on the
incident light intensity.WhenV is positive and sufficiently large, the current saturates
at a value Ia corresponding to a certain light intensity a. The current saturation
occurs when all photoelectrons emitted by the cathode are collected by the anode.
One of the important results of this experiment is obtained when the polarity of the
voltage is reversed. The current does not go to zero immediately with the negative
voltage, indicating that electrons are still emitted fromCwith a certain kinetic energy.
However, when the voltage reaches a value − V 0, even the electrons ejected with
highest energy are stopped, so that the current goes to zero. From this result one
can conclude that the voltage V 0, called the stopping potential, or stopping voltage,

Fig. 2.12 Variation of the photoelectric current I with the applied voltage V, for two intensities of
the incident light, a and b. The saturation current is directly proportional to the light intensity, but
the stopping voltage V0 is independent of the intensity
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Fig. 2.13 Millikan’s measurements of the stopping voltage in the photoelectric effect in sodium,
as a function of the incident light frequency

corresponds to the kinetic energy Tmax of the electrons that are emitted with the
maximum energy. Thus, we have

Tmax = e V0, (2.30)

where e is the absolute value of the electron charge. The second result of the exper-
iments is obtained by measuring the I versus V curve with another light intensity
b, which is one-half the intensity a. As shown by the two curves in Fig. 2.12, the
maximum kinetic energy is independent of the light intensity of the incident light.
Then, the question is what happens if the light frequency changes. Figure 2.13 shows
the variation of the stopping potential V 0 as a function of the frequency of the inci-
dent light on a sodium cathode, measured by Millikan in 1914. These measurements
show that there is a cutoff frequency νc, below which there is no photoelectric effect.
The value of this frequency varies from one material to another, and for sodium it
is νc = 4.39 × 1014 Hz (λ ≈ 683 nm, which corresponds to red light, almost in the
infrared).

The first observations of the photoelectric effect in the nineteenth century could
not be explained with the classical wave theory of light, and for several years they
were a challenge for physicists. Then, in 1905, Albert Einstein questioned the clas-
sical theory of light and used the ideas of quantization, initially proposed by Planck,
to explain the photoelectric effect. Several years later, Millikan’s measurements
confirmed the quantum theory of light, and in 1921 Einstein received the Physics
Nobel Prize. The rigorous formulation of the quantummodel for the electromagnetic
radiation was made possible many years later by the quantum field theory. One of
the most important results of this theory is that an electromagnetic wave is quan-
tized in energy. This means that if light has frequency ν, it can only be generated
with discrete energy values nhν, where n is an integer and h is Planck’s constant
(h = 6.6262 × 10−34 J s).

According to Einstein, the energy of electromagnetic radiation is quantized in the
form of packets, called photons. When an electromagnetic wave has high energy,
that is, much larger than hν, the number of photons is so large, that the discrete nature
of the energy is not perceived. In this situation, the wave behaves classically. The
energy of a radiation photon with frequency ν, or angular frequency ω = 2πν, is

E = h ν = � ω, (2.31)
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where � = h/2π . Photons have, in many situations, particle-like behavior. However,
they are not common particles, since they only exist at the speed of light c, and have
zero rest mass. The relation between energy and frequency, given by (2.31), allows
the electromagnetic spectrum to be represented in energy units, such as eV. Using
the values of Planck’s constant and the electron charge, one can show that to convert
Hz to eV it is necessary to multiply by 4.1357 × 10−15. This conversion factor was
used to make Fig. 2.4. Thus, the visible region of the spectrum has wavelength from
700 to 400 nm, frequency from 4.3 × 1014 Hz to 7.5 × 1014 Hz, and energy from
1.7 eV to 3.1 eV. Appendix B presents a conversion table between several units of
energy.

We know fromelectromagnetic theory that themomentum p of awave in a vacuum
is related to its energy E by

p = E

c
. (2.32)

Using Eq. (2.10), with n = 1, and Eq. (2.31) in (2.32), we obtain the expression
for the photon momentum,

�p = � �k. (2.33)

It follows, then, that in an electromagnetic wave of frequency ν andwave vector �k,
both energy andmomentum are quantized. It is important to draw attention to the fact
that the theory does not impose a spatial quantization of the electromagnetic wave.
In other words, there is nothing that limits the existence of a photon to a finite region
of space. It is possible to have a flat electromagnetic wave, filling the entire space,
corresponding to just one photon. Quantization is done only in terms of momentum
and energy. It is possible, however, to have an electromagnetic wave confined to a
limited region of space, as for example in the wave pulse in Fig. 2.5, containing only
one photon. In this case, the photon is more like a particle, or a corpuscle.

In the photoelectric effect, photons are absorbed by a metal surface in an interac-
tion process that results in the emission of electrons. Since there is energy conserva-
tion in the electron-photon interaction, when the electron is emitted from the metal
surface, its kinetic energy is

T = h ν − W, (2.34)

where W is the work required to pull the electron out of the metal. Since there are
electrons more attached to atoms than others, T varies from one electron to another.
Electrons that are less bound are ejected from the surface with maximum kinetic
energy. For these electrons we can write

Tmax = h ν − W0, (2.35)
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where W0, a characteristic quantity of each metal called work function, is the
minimum energy necessary for an electron to overcome the internal forces of attrac-
tion and cross the surface. Using the equations above, one can show that Einstein’s
theory explains the main observations of the photoelectric effect. First, we see that
electrons “ejected” from the metal by the absorption of photons with energy

h νc = W0 (2.36)

have zero kinetic energy. Therefore, as can be seen in Fig. 2.13, they correspond
to V 0 = 0 and do not contribute to the photoelectric current. Thus, the value of
the frequency νc in Eq. (2.36) is the cutoff frequency, which is independent of the
incident light intensity. When ν > νc and V > − V 0, there is a photoelectric current
resulting from the emission of electrons. If the light intensity increases, the number
of incident photons per unit of time increases, resulting in a proportional increase in
the photoelectric current.

With Eqs. (2.30) and (2.35) we can obtain an expression for the stopping potential
V 0 in terms of the photon frequency

e V0 = h ν − W0. (2.37)

Using (2.36), we obtain for ν ≥ νc the main result of Einsteins’s theory for the
photoelectric effect

V0 = h

e
(ν − νc), (2.38)

which shows the linear variation of V 0 with ν, in agreement with Millikan’s
experimental data in Fig. 2.13.

The ideas of energy quantization and of the corpuscular nature of electromagnetic
radiation had a profound impact on physics in the beginning of the twentieth century.
Based on these ideas, several physicists began to look for effects of quantization
and wave behavior in electrons. These efforts led to the formulation of quantum
mechanics in 1926 by Schrödinger and independently by Heisenberg. The equations
of quantummechanics govern the behavior of electrons in atoms and solids and their
knowledge is essential for the understanding of electronic phenomena that occur in
different materials.

Example 2.1 In a photoelectric effect experiment, the material of the photo-
cathode is lithium, whose work function is 2.3 eV, and the wavelength of the
light used to illuminate the photocathode is 300 nm. Determine: (a) The cut-off
frequency of lithium; (b) The value of the stopping potential.
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(a) The relation between the work function and the cutoff frequency is given
by Eq. (2.36). Thus, using the quantities above and the values of the
physical constants given in Appendix B, in SI units, we have

νc = W0

h
= 2.3 × 1.6 × 10−19

6.63 × 10−34
∼= 5.5 × 1014 Hz.

(b) The stopping potential is related to the cutoff frequency and the light
frequency by Eq. (2.38). We first need to calculate the light frequency

ν = c

λ
= 3.0 × 108

300 × 10−9
= 10.0 × 1014 Hz.

Thus

V0 = h

e
(ν − νc) = 6.63 × 10−34

1.6 × 10−19
× 4.5 × 1014 = 1.86 V.

2.4 The Electron as a Wave: Uncertainty Principle

As studied in the previous section, electromagnetic radiation is quantized in energy,
acquiring, in certain situations, the nature of corpuscles, or particles. This concept
was introduced in physics to explain an experimental result, the photoelectric effect,
which could not be understood in a classic context. On the other hand, the concept
that the electron, a particle in the classical sense, is also a wave, resulted from
a theoretical hypothesis that was later confirmed experimentally. It was Louis de
Broglie, in his doctoral thesis presented in 1924 to the University of Paris, who
proposed the revolutionary idea of waves of matter. For his theory, de Broglie won
the Physics Nobel Prize in 1929, after it was confirmed experimentally.

The hypothesis of de Broglie that the electron may behave as a particle and as a
wave was inspired by the concept, already accepted at the time, that electromagnetic
radiation has a particle-like behavior. He postulated that the electron is characterized
by a frequency ν and wavelength λ, related to energy and momentum in exactly the
same way as for photons. As in Eq. (2.31), the electron energy is expressed in the
form

E = h ν, (2.39)

while the momentum is

p = h/λ. (2.40)
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These two equations lead to quite interesting results. Multiplying and dividing the
right-hand side of Eq. (2.40) by 2π, and using the expression k = 2π/λ, we obtain
the relation between momentum and wavevector

p = � k, (2.41)

which is the same as Eq. (2.33). Then comes an important question. If matter has
a wave behavior, why we do not notice this in daily life? Consider an object of
mass m = 1.0 kg moving with speed v = 100 m/s. With Eq. (2.40) we find that the
corresponding wavelength is

λ = h

p
= h

mv
= 6.6 × 10−34

100
= 6.6 × 10−36 m. (2.42)

Thus, thewavelength is very small compared to the typical dimensions of ordinary
objects. Therefore, the diffraction and interference effects, which are characteristic
of waves, are entirely negligible.

Now consider an electron with kinetic energy T = 100 eV. The corresponding
wavelength is

λ = h

p
= h√

2mT
≈ 1.2 × 10−10 m = 1.2

◦
A . (2.43)

This wavelength has the same order of magnitude as the size of the atoms and the
distance between them in matter. For this reason, wave effects are very important on
the atomic scale.Thewavenature of electrons, proposedbydeBroglie,was confirmed
experimentally in 1927 byClintonDavisson and his student Lester Germer, and inde-
pendently by George Thomson. Both experiments consisted of making an electron
fall on a thin metallic crystal film and observing the transmitted pattern. They found
that the crystal, with its periodic atomic structure, behaves like a diffraction grating
for the electron wave, producing interference fringes in the scattered electron beam,
just like in optics experiments. Davisson and Thomson received the Physics Nobel
Prize in 1939 for their pioneering studies.

The fact that electrons with energies of dozens of eV behave as waves with wave-
length several orders of magnitude smaller than that of visible light, has an important
practical application. When an electron beam falls on a material, the analysis of the
scattered electronsmakes it possible to observemuch smaller details than it is possible
with visible light in an optical microscope. This is the basic principle of operation
of the electron microscopes. In the optical microscope, the observer sees the image
of the object enlarged by means of glass lenses, which process the light scattered by
the details of the analyzed material. As the minimum wavelength of visible light is
around 300 nm, it is not possible to distinguish details with dimensions much smaller
than this value. However, since electron microscopes use waves of electron beams, it
is possible to observe details with dimensions of a few nanometers. In this case, the
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image of the object is formed by magnetic lenses (magnetic fields produced by coils
with suitable shapes) and converted into electrical signals by means of detectors, that
produce the images observed on computer displays.

Another important application of matter waves is in the study of crystalline solids
by means of electron diffraction. Since the crystal lattice parameter is on the order
of a few angstroms, diffraction only occurs with radiation of wavelength close to
this value. It is then possible to use electron or neutron beams to study the atomic
structure of materials or their elementary excitations, that will be described in the
following section. One advantage of neutron scattering lies in the fact that since they
are electrically neutral, their penetration into the solids is much larger than that of
electrons. Another advantage is that neutrons have spin, so that they can be used to
study the magnetic structure and magnetic excitations of materials.

Example 2.2 Calculate the energies and velocities of an electron beam and of
a neutron beam, such that both have a wavelength of 2 Å.

From the relationship between energy and wavelength, given by Eq. (2.43),
we obtain T = h2/(2mλ2).

For the electron beam m = 9.1 × 10−31 kg, therefore

T = 6.632 × 10−68

2 × 9.1 × 10−31 × 22 × 10−20
= 6.0 × 10−18 J.

The electron energy in eV is

T = 6.0 × 10−18

1.6 × 10−19
= 37.5 eV.

To find the electron speed we use its relation to the kinetic energy T =
mv2/2. Thus

v = (2T/m)1/2 =
(
2 × 6.0 × 10−18

9.1 × 10−31

)1/2

= 3.6 × 106 m/s.

In the case of the neutron beam we use m = 1.67 × 10−27 kg

T = 6.632 × 10−68

2 × 1.67 × 10−27 × 22 × 10−20
= 3.3 × 10−21 J

v =
(
2 × 3.3 × 10−21

1.67 × 10−27

)1/2

= 2.0 × 103 m/s.

The characteristics of an electron can be described quantitatively by means of a
wave function �, that will be formally introduced in the next chapter. If the electron
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Fig. 2.14 a Wave packet that describes the state of a free particle located in a region of space.
b Fourier transform of the wave packet shown in a

is a plane wave propagating in the x direction with a well-defined momentum p0, it
will have a wave number k0 = p0/�, and its wave function can be written in the form

�(x, t) = A eik0x−iω t , (2.44)

where the angular frequency ω is related to the energy by E = �ω. The wave
function (2.44) describes an electron that fills the entire space, and therefore has an
infinitely large uncertainty	x in its position. Clearly, it is very difficult to “produce”
an electron with the wave function (2.44) throughout space. However, it is possible
to have a more localized electron, with a wave function like the one in Fig. 2.14a.
In this case, the electron does not have a well-defined wavevector k0. It is described,
say at t = 0, by a wave function �(x, 0) that is a superposition of plane waves with
wave vectors close to k0 and amplitudes φ(k) with maximum at k = k0 and width
	k, as in Fig. 2.14b, in a similar way to the case of the electric field E(x, 0) discussed
in Sect. 2.1. An uncertainty in the determination of k implies an uncertainty in the
electron momentum 	p = � 	k. It is possible to show, by the Fourier transform of
a function of the type in Fig. 2.14a, that 	x 	k ≈ 1 (Problem 2.11). Thus, for an
electron described by the wave function �, this it means that

	x 	p ≈ �. (2.45)

The result in Eq. (2.45) has an important consequence in quantum physics. It
means that in an experimental measurement of the position and momentum of an
electron, there is an uncertainty	x in themeasured position, related to the uncertainty
of the measured momentum 	p. This was postulated in 1927 by Heisenberg, and is
known as the uncertainty principle. According to this principle, in an experiment it
is not possible to determine the exact position value of the electron and itsmomentum
simultaneously. There is a minimum uncertainty in the measurement process that is
given by

	x 	p ≥ �/2. (2.46)
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Notice that in the case of a plane wave function like that of Eq. (2.44), the
momentum is well determined (	p = 0), on the other hand 	x → ∞.

There is another version of the uncertainty principle, related to the determination
of the electron energy E and the time interval 	t necessary to measure it. According
to Heisenberg, if the measurement is performed in a finite time interval 	t, there is
uncertainty 	E in determining E given by

	E 	t ≥ �/2. (2.47)

The uncertainty principle, represented by Eqs. (2.46) and (2.47), was proposed
by Heisenberg at a time when the concept of the electron wave function was not yet
known. It had a profound impact on physics and also generated many philosophical
speculations. In fact, it is a natural consequence of the wave character of the particles
ofmatter, whose formalization is given by quantummechanics, whichwill be studied
in the next chapter.

2.5 Phonons and Other Elementary Excitations in Solids

The quantization of the electromagnetic wave and of the electron wave are just
two examples of a general phenomenon that occurs with any type of wave. This
phenomenon is observed experimentally through several effects and has a rigorous
explanation in quantum field theory. Any wave is formed by energy “packages”,
called quanta (plural of quantum) of energy. Therefore, the energy of a wave is
discrete and has a value equal to a multiple of h. The quantum of a wave has both
wave and particle behavior, having energy and momentum given by

E = � ω, (2.48)

�p = � �k, (2.49)

which are identical relations to those seen previously for electromagnetic waves and
for electrons. Excitations in a solid have awave character and are therefore quantized.
The quanta of the various waves are called elementary excitations. Thus, the quantum
of an elastic wave in a crystal is called a phonon.

There are many other elementary excitations in solids, usually with names ending
in on. The quantum of a spin wave in a magnetic material is called magnon. The
quantum of a plasma wave in a metal or semiconductor is called plasmon. Other
excitations that will not be presented in this book are excitons, polarons, polaritons,
helicons, plasmaritons, rotons, etc.
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Problems

2.1 Apply the rotational operator (∇×) to Eq. (2.3), use Eq. (2.4), together with
the relationships between the fields and the vector identity

∇ × (∇ × �A ) = ∇(∇ · �A ) − ∇2 �A

to show that in a medium without charges or currents, the electric field obeys
the wave equation, Eq. (2.5).

2.2 Consider an electric field with amplitude that varies in time and space with a
function E(x,t).

(a) Show that this functionwill be a solution of thewave equation, Eq. (2.6),
if the argument has the form E(x,t) = f (x − vt) + g (x + vt), where f
and g are any differentiable functions.

(b) Choose a function f (x) at t = 0 which satisfies the wave equation and
make a qualitative plot of its variation with x at any two instants of time
t > 0. Interpret the result.

2.3 Consider the electric field �E(x, t) = ŷ E0 cos(kx−ωt) of an electromagnetic
plane wave.

(a) Show that this field is a solution of the wave equation by the direct
substitution in Eq. (2.6).

(b) Show that this function is a solution to the wave equation, since it is a
particular case of the solution obtained in Problem 2.2.

(c) Make a qualitative plot of E(x, t) as a function of x for t = 0, and obtain
the relationship of the distance between two consecutive maxima of the
wave with ω and k.

(d) Make the plot of E(x, t) as a function of x for t = 	t and relate the
speed of a maximum, 	x/	t, with ω and k.

2.4 Consider an electromagnetic wave pulse of Gaussian form at the instant
t = 0

E(x, 0) = E0 e
−x2/2L2

cos k0x .

(a) Make a semi-quantitative plot of E as a function of x for E0 = 1 (arbi-
trary units) and L = 5 × 2π /k0. Use a computer to make a quantitative
plot using k0 = 1.

(b) Determine the function that describes the pulse at an arbitrary instant
t, by imposing that E(x, t) satisfies Eq. (2.6).

(c) Repeat item (a) for the field obtained in item (b).

2.5 Show that in the limit of long wavelengths, λ � a, Eq. (2.22) reduces to a
wave equation for a continuous variable u,
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∂2u

∂t2
= v2

∂2u

∂x2
.

2.6 The lattice vibrations of a certain crystal can be described by the one-
dimensional chain model given by Eq. (2.22), with atoms of atomic weight
56, lattice parameter 2.9 Å, and elastic constant C = 104 g/s2.

(a) Calculate the propagation velocity of the elastic wave in the chain in
the limit of long wavelengths, λ � a (or ka	 1), in cm/s, and compare
it with the speed of light.

(b) Calculate the maximum value of the atomic vibration frequency in the
chain in rad/s and in Hz.

2.7 From the measurements of the photoelectric effect shown in Fig. 2.13
calculate.

(a) The work function of sodium, in eV.
(b) The stopping potential V 0 of a photoelectric cell with a sodium

photocathode, illuminated by light with wavelength λ = 350 nm.

2.8 A photoelectric effect measurement apparatus uses a cell with an aluminum
photocathode, whose work function is 4.2 eV. The ultraviolet light used has
a wavelength of 180 nm.

(a) What is the cutoff frequency of aluminum?
(b) What is the stopping potential of aluminum for this wavelength?
(c) Calculate the kinetic energy of the fastest electron emitted.
(d) What is the energy of an electron in aluminum that is ejected with zero

speed?

2.9 A light-emitting diode made with the semiconductor GaP emits light with a
wavelength of 549 nm, with a power 1 μW.

(a) What is the energy, in eV, of the photons emitted by the diode?
(b) How many photons per second are emitted by the diode?

2.10 In a photoelectric effect experiment with a laser, light with intensity of 1.0 W
and a certain frequency is focused on a lithium photocathode, whose work
function is 2.3 eV.

(a) What is the stopping potential for a frequency with value twice the
cutoff frequency?

(b) Suppose that for every ten photons that reach the photocathode, one
electron is emitted, and that the positive potential applied between
anode and cathode is such that the current is saturated. Calculate the
value of this current, in ampere.
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2.11 An electron is described by a wave function in the form of a Gaussian packet,
given at t = 0 by

�(x, 0) = A e−x2/2L2
eik0x .

(a) Make a qualitative plot of |�(x, 0)|2 as a function of x.

(b) The width of the wave packet can be characterized by 	x =
√〈

	x2
〉
,

where
〈
	x2

〉
is the mean square deviation of the function relative to its

average value xm,

〈
	x2

〉 =
∫

|�(x, 0)|2(x − xm)2dx .

Calculate 	x for the electron.

(c) Calculate the Fourier transform of the wave function φ(k), using the
definition of Eq. (2.16), with E replaced by �. Make a qualitative plot
of |φ(k)|2 and calculate the width 	k of the packet in the same way as
in item b).

(d) Calculate the product 	x 	k and interpret the result. Hint, use

∞∫

−∞
e−y2dy = 2

∞∫

−∞
y2e−y2dy = √

π.

2.12 An electron and a photon each have a wavelength of 3.0 Å. Calculate the
energy and momentum of each one and interpret the result.

2.13 The maximum resolution of a microscope is limited by the wavelength of the
radiation used, that is, the shortest distance that can be observed is approxi-
mately equal to the wavelength. What should be, in eV, the electron energy
in an electron microscope so that its resolution is 10 Å?

2.14 Show that the uncertainty relation for a particle, in terms of the uncertainties
in position 	x and in wavelength 	λ that can be measured simultaneously,
is given by 	x 	λ ≥ λ2/4π .

2.15 Consider that the uncertainty in the measurement of the photon wavelength
is 	λ/λ = 10−7. Calculate the uncertainty in the measurement of the photon
position for the following wavelengths: 5× 10−4 Å (γ-ray); 5 Å (X-ray); and
500 nm (visible light).

2.16 The atomic vibrations of certain diatomic crystal can be described by the
one-dimensional model studied in Sect. 2.2, with atoms of atomic weights
39 and 80, and elastic constant C = 104 g/s2.

(a) Calculate the value of the optical mode vibration frequency with k =
0, in rad/s and in Hz.
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(b) What is the phonon energy corresponding to the vibration of item (a)
in eV?

(c) For the phonon of item (b) to be excited resonantly by a photon of
the same energy, what should be the wavelength of this photon and in
which region of the electromagnetic spectrum is it situated?
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Chapter 3
Quantum Mechanics: Electrons
in the Atom

This chapter presents the basic concepts of quantummechanics that are necessary for
the understanding of physical properties of materials and phenomena that underly
the operation of electronic devices. It is designedmainly to engineering students with
no background in modern physics. Initially we present postulates and arguments that
lead to the Schrödinger equation, that is essential to calculate the properties of atoms
and materials. Then we apply it to the “motion” of particles in simple potentials and
show two important purely quantumeffects, the energy quantization in potentialwells
and the tunnel effect. Finally, we present the solution of the Schrödinger equation for
the hydrogen atom, that is key for the understanding of atoms with many electrons
and the periodic table of the chemical elements.

3.1 The Postulates of Quantum Mechanics

A major step for the development of quantum mechanics was taken in 1913 when
Niels Bohr explained the emission spectrum of the hydrogen atom. Inspired by the
ideas of quantization of Planck and Einstein, Bohr proposed a model for the atom
based on some assumptions: 1-An electron in an atom moves around the nucleus
under the influence of the Coulomb attraction only in discrete circular orbits, such
that the angular momentum is quantized, L = n �, where n is an integer; 2-In
each orbit the electron is in a stationary state with energy given by the electrostatic
interaction with the nucleus; 3-The electron may undergo a transition from an initial
state with energy Ei to another state with energy Ef by either absorbing (Ef > Ei) or
emitting (Ef < Ei) a photon with energy hν = ∣

∣E f − Ei

∣
∣.

The Bohr model was very successful in explaining quantitatively the puzzling
experimental observations of the discrete radiation spectrum of the atoms in a
hydrogen gas under electric discharge. Despite its success, the model left many
physicists uneasy because of the ad-hoc imposed quantization. There was still skep-
ticism with the quantization of the thermal oscillations proposed by Planck in 1900
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and of the light proposed by Einstein in 1905. However, Bohr’s theory for the atom
together with de Broglie’s postulate for the wave nature of matter, paved the way for
the development of quantum mechanics, announced in 1926 by Werner Heisenberg
and independently by Erwin Schrödinger. The two formulations were different, but
soon it was found that they were equivalent and led to identical results. Due to the
success of quantum mechanics in explaining the atom, the Physics Nobel Prize was
awarded to Bohr in 1922, to Heisenberg in 1932, and to Schrödinger in 1933.

Herewepresent only the formulation of Schrödingerwhich is basedon an equation
for a complex wave function. Some authors try to justify this equation using several
plausibility arguments. Of course, some of them are useful in understanding several
aspects of quantum mechanics. However, the Schrödinger equation is considered
a fundamental equation of physics, that cannot be derived from classical laws. Its
best justification is the fact that its results explain experimental observations and
quantitative measurements. Notice that most results presented in this section can
be rigorously derived by the linear vector space formalism which underpins the
modern quantum theory and may be found in more advanced texts on the subject.
It is particularly more adequate for the cases where there is no classical analog to
genuinely quantum objects such as the spin, a key quantity in devices based on
magnetic materials, discussed in Chap. 9. For our purposes, here we follow the more
intuitive wave approach. Quantum mechanics is based on four postulates, presented
in the following sub-sections.

3.1.1 The Wave Function

The state of an electron, or any material “particle”, is characterized by a complex
wave function �(x, t). In three dimensions, it is actually a function of �r , not of x, but
we will keep it for simplicity. The function� and its derivatives with respect to x and
t are continuous, finite and unique. If at a certain instant t we make a measurement
to determine the location of a particle with wave function �(x, t), the probability
of finding the particle between x and x + dx is given by P(x, t) dx, where

P(x, t) = � ∗ (x, t)�(x, t) = |�(x, t)|2. (3.1)

As an example, consider a particle with a wave function in the form of a wave
packet, such as in Fig. 2.14a. The probability of finding the particle within the region
�x is close to unity, so that the wave packet is a good wave function for a reasonably
well localized particle.

For any wave function, the probability of finding the particle in the entire space
is 1. Thus, we have

∞∫

−∞
P(x, t) dx =

∞∫

−∞
� ∗ (x, t)�(x, t) dx = 1. (3.2)
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This condition is sufficient to determine the amplitude of the wave function with
a known shape. We say that the wave function that satisfies Eq. (3.2) is normalized.

3.1.2 Quantum Operators

The wave function allows the calculation of the probability of “localization” of a
particle at any time. In otherwords, thewave function alone only gives information on
the position of a particle. Since in physics it is necessary to calculate other quantities
related to the motion or properties of a particle, the next question is how to extract
more information from the wave function. The answer is in the concept of quantum
operator. Each physical quantity corresponds to a mathematical operator, which
operates on the wave function.

The operator for the linear momentum in one dimension, say x, is

pop = −i�
∂

∂x
, (3.3)

where i is the imaginary unit. Let us apply this operator to the plane wave function
of a free electron given by Eq. (2.44). The result is

pop�(x, t) = −i�
∂

∂x
A eik0 x−iω t = � k0 �(x, t). (3.4)

Thus, application of the momentum operator (3.3) to the wave function of a free
electron gives the momentum proposed by de Broglie, Eq. (2.41), multiplied by the
wave function. This is a strong indication of the consistency of Eq. (3.3) with the
wave nature of the electron. It is important to note that when an operator is applied
to a wave function, in general, the value of the associated physical quantity is not
obtained directly as in Eq. (3.4). When an operator applied to� reproduces the wave
function multiplied by a constant, we say that � is an eigenfunction of the operator.
Thus, if

pop�(x, t) = p�(x, t), (3.5)

� is an eigenfunction of pop, and p is called the eigenvalue. In this case, the
momentum of the particle is well determined, that is, its uncertainty is zero. This is
the case for the electron described by the wave function in Eq. (2.44).

In the more general case of three dimensions, the momentum operator is defined
by

�pop = −i� ∇ = −i�

(

x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)

. (3.6)
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Another important operator is that of energy, given by

Eop = i�
∂

∂t
. (3.7)

Application to a free electron gives

Eop�(x, t) = i�
∂

∂t
A eik0 x−iω t = � ω �(x, t). (3.8)

Thus, the wave function of a free electron is also an eigenfunction of the energy,
with eigenvalue

E = � ω, (3.9)

which is also in agreementwith deBroglie’s theory. From these operators it is possible
to build others. For example, the kinetic energy operator is

Top = 1

2m
�pop · �pop = − �

2

2m
∇ · ∇ = − �

2

2m
∇2 (3.10)

wherem is the particlemass and∇2 is theLaplacian operator. InCartesian coordinates
the Laplacian is

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. (3.11)

In the particular case of one-dimension x, the kinetic energy operator is

Top = − �
2

2m

∂2

∂x2
(3.12)

Table 3.1 shows the quantumoperators corresponding to some classical quantities.
The important point is that having the wave function of a particle, several physical
quantities associated with the particle motion or properties can be readily calculated.
The operators for other quantities can be derived from the ones above. For instance,
since the angular momentum of a particle is �r × �p, the corresponding operator is
given by the vector product of the position vector with the momentum operator in
Eq. (3.6), as in Table 3.1.



3.1 The Postulates of Quantum Mechanics 55

Table 3.1 Correspondence between some quantum operators and classical quantities

Quantity Classical quantity Quantum operator

Position (1D) x x

Position (3D) �r �r
Linear momentum (1D) px −i� ∂/∂x

Linear momentum (3D) �p −i� ∇
Energy E −i� ∂/∂t

Kinetic energy T −(�2/2m)∇2

Angular momentum
−→
L −i� �r × ∇

3.1.3 Expectation Value of a Quantity

The next important question in the formulation of quantum mechanics is how
to extract a quantitative value for a variable associated with a particle described
by a given wave function. Before answering this question, we note that quantum
mechanics dealswith probabilities, so thatmeasurements also have to be done consid-
ering this aspect. This means that if a particle is described by a wave function�(x, t),
the measurement of some of its properties should be done several times at the same
value of t, and recording the observed values. Then, the average of the observed
values is considered the result of the measurement. Correspondingly, a certain quan-
tity associated with an operator acting on a wave function, should in general give an
average value, that is called expectation value. This is the most probable value, that
is an average value in the statistical sense. Thus, since the probability of finding a
particle withwave function�(x, t), between x and x+ dx is given byP(x, t) dx, where
P(x, t) is given by Eq. (3.1), the expectation value 〈Q〉 of a quantity corresponding
to the operator Qop is, in 3D,

〈Q〉 =
∞∫

−∞
� ∗ Qop� dx dy dz, (3.13)

where we have simplified the notation for a triple integral. It is also common to repre-
sent the expectation value by Q̄. Notice that in 3D, the condition of normalization is
expressed by

∞∫

−∞
� ∗ (�r , t)�(�r , t) dx dy dz = 1. (3.14)

From Eqs. (3.13) and (3.14) we can see that if � is an eigenfunction of Qop, then
the expectation value of Qop is the eigenvalue itself. In this case, the value of the
quantity can be determined precisely, with zero uncertainty.
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3.1.4 The Schrödinger Equation

The evolution of the wave function of a particle in a physical system is determined
by a differential equation proposed by Schrödinger. As stated earlier, this equation
cannot be derived from the laws of classical physics, but it can be understood with
plausibility arguments. The Schrödinger equation states that the total energy of a
particle, or a system of particles, with wave function �(�r , t), expressed in terms
of the energy operator acting on the wave function, is the sum of the kinetic and
potential energies. The equation can be written as

(Top + Vop)�(�r , t) = Eop�(�r , t). (3.15)

Using the forms of the operators in Eqs. (3.7) and (3.10), the Schrödinger equation
for a particle of mass m becomes

− �
2

2m
∇2�(�r , t) + Vop�(�r , t) = i�

∂�(�r , t)
∂t

. (3.16)

where the operator Vop represents the interaction potential to which the particle is
subjected in a given physical situation, that varies from one problem to another. If
the particle motion is restricted to the coordinate x, Schrödinger equation reduces to

− �
2

2m

∂2�(x, t)

∂x2
+ V (x, t)�(x, t) = i�

∂�(x, t)

∂t
. (3.17)

From now on we will no longer use the subscript “op” in the operator to simplify
the notation. Equation (3.16) is a differential equation of partial derivatives that has,
for each potential, an infinite number of solutions. The solutions for each problem
are determined by the boundary conditions that � and ∂�/∂x must satisfy, as well
as the normalization condition (3.2) that “ties” the amplitudes of the wave func-
tion. Equation (3.16) has another important characteristic, it is a linear differential
equation, since the operators and the wave functions have power one. An important
property of a linear equation is that the superposition of two or more solutions, is
also a solution of the equation (see Problem 3.1).

3.2 The Time-Independent Schrödinger Equation

We shall now consider the case where the potential energy to which a particle is
subjected to does not vary in time, which is the most common physical situation. In
this case we can use a standard procedure for solving partial differential equations,
namely, separation of variables. This consists in searching for solutions in the form
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of products of functions such that each one contains only one of the independent
variables involved in the equation.

In the case of the Schrödinger equation, if V is a function of the particle position
only, it is possible to find a solution for Eq. (3.16) in the form

�(�r , t) = ψ(�r) φ(t), (3.18)

where ψ(�r) and φ(t) are functions, respectively, of �r and t only. Substitution of
(3.18) into (3.16) leads to

− �
2

2m
∇2ψ(�r) φ(t) + V (�r) ψ(�r) φ(t) = i�

∂φ(t)

∂t
ψ(�r). (3.19)

Dividing both sides by the product ψ(�r) φ(t) we obtain

1

ψ(�r)
[

− �
2

2m
∇2ψ(�r) + V (�r) ψ(�r)

]

= 1

φ(t)

[

i�
∂φ(t)

∂t

]

. (3.20)

Notice that the left-hand side of (3.20) does not depend on t, while the right-hand
side does not depend on �r . Thus, the common value of the two sides cannot depend
on t or �r , and therefore it must be a constant. The equation obtained by equating the
right-hand side of (3.20) to a constant E is

1

φ(t)

[

i�
∂φ(t)

∂t

]

= E .

This equation gives

dφ(t)

dt
= −i

E

�
φ(t), (3.21)

where we have replaced the symbol of partial derivative by the one of total derivative,
since φ(t) is a function of t only. The solution of (3.21) is

φ(t) = exp

(

−i
E

�
t

)

. (3.22)

This shows that φ(t) is an oscillating function in time with angular frequency
ω = E/�. Therefore, we can associate the constant introduced in the separation
of variables with the energy of the state whose wave function is the solution of
Eq. (3.16).

The equation obtained by equating the left-hand side of (3.20) toE is a differential
equation in the spatial variables,
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− �
2

2m
∇2ψ(�r) + V (�r) ψ(�r) = E ψ(�r). (3.23)

This is known as the time-independent Schrödinger equation. The total energy
operator is also called the Hamiltonian of the system, so that Eq. (3.23) can be
written in the form

Hψ(�r) = E ψ(�r), (3.24)

where

H = − �
2

2m
∇2 + V (�r). (3.25)

is the Hamiltonian operator. Equation (3.24) is called an eigenvalue equation. Its
solution gives the eingenfunctions of the Hamiltonian, as well as the corresponding
energy eigenvalues. Hence, the complete solution of Eq. (3.16) is

�(�r , t) = ψ(�r) exp
(

−i
E

�
t

)

, (3.26)

whereψ(�r) is the eigenfunction of Eq. (3.24) with energyE. Note that the probability
density of finding the particle with the wave function (3.26) at the position �r at an
instant t, given by

P(�r , t) = � ∗ (�r , t)�(�r , t) = |ψ(�r)|2 (3.27)

is independent of time. This means that if the particle is initially in an eigenstate
of the Hamiltonian, it remains indefinitely in that state. We say that the particle in
this situation is in a stationary state. In the following subsections we shall use the
time-independent Schrödinger equation to calculate the properties of a particle in
some simple situations.

3.3 Simple Applications of Quantum Mechanics

3.3.1 Free Electron

The simplest example for application of the Schrödinger equation is that of a uniform
potential, V (r) = constant. Classically, a particle in such potential is subjected to a
force �F = −∇V = 0. Therefore, it is a free particle and moves at a constant speed.
Since the value of the constant potential does not influence the motion, we consider
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V = 0. Assuming that the electron moves in one dimension along the x direction,
Eq. (3.23) becomes

− �
2

2m

∂2ψ(x)

∂x2
= E ψ(x). (3.28)

The solution of this equation can be written in the form

ψ(x) = A eik x + B e−ik x . (3.29)

where A and B are constants to be determined by the boundary conditions and k is a
wave number. Substituting (3.29) in (3.28) one can see that the energy is related to
k by

E = �
2 k2

2m
. (3.30)

Using for φ(t) the expression (3.22), we obtain with the first term in Eq. (3.29) a
wave function like (2.14), corresponding to a plane wave propagating in the positive
x direction, that is

�(x, t) = A eik x−iωt . (3.31)

This is the wave function of a free electron, moving at a constant speed in the + x
direction, as had been anticipated inEq. (2.44) obtained fromdeBroglie’s hypothesis.
Likewise, the wave function obtained with the second term in (3.29) corresponds
to a free electron moving in the − x direction. In both cases, the wave functions
are eigenfunctions of the momentum operator, and the momentum eigenvalues are
p = ±� k. In three dimensions the momentum is �p = � �k, and is related to the
energy by Eq. (3.30), which can be written as

E = p2

2m
. (3.32)

As expected, the energy is exactly the kinetic energy, because we considered a
free particle in zero potential. Note that in this problem there is no condition that
restricts the value of the energy E. Thus, E can vary continuously from 0 to infinity.
Note that from Eq. (3.30) one can obtain the dispersion relation ω(k) for the free
electron. Using E = �ω we have

ω(k) = � k2

2m
, (3.33)

which is the parabolic function illustrated in Fig. 3.1. The particle with the wave
function (3.31) behaves like a planewave that fills the entire space, havingwavelength
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Fig. 3.1 Parabolic
dispersion relation for a free
electron

ω(k)

k

λ = 2π

k
, (3.34)

where

k = √
2mE/�. (3.35)

An important remark is that the results above are in complete agreement with
de Broglie’s theory for the wave nature of the electron, studied in Chap. 2. Notice
that if the wave function (3.31) is normalized through Eq. (3.2) we obtain A → 0.
Therefore, it does not make sense to normalize (3.31) across the whole space. In fact,
there is notmuch physical sense in considering a particle in the entire space.However,
as we saw in Sect. 2.1, plane waves of type (3.31) can be used mathematically to
build a wave packet like the one in Fig. 2.14a, which represents a particle confined
to a small region in space. So, let us consider a free particle represented by a wave
function in the form of awave packet. As discussed in Sect. 2.1, the packet propagates
with group velocity

vg = ∂ω

∂k

∣
∣
∣
∣
k0

. (3.36)

Using the dispersion relation (3.33)we obtain the velocity of a particle represented
by a wave function as in Fig. 2.14

vpart = vg = �

m
k0. (3.37)

The momentum of this particle is then

p = mvpart = � k0. (3.38)

which is also in agreement with the concept introduced by de Broglie.
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3.3.2 Particle in an Infinite Square-Well Potential

We shall now study the properties of a particle with mass m, that moves “freely” in
one dimension, confined to a region in space by an infinite square well potential,
illustrated in Fig. 3.2. This case is often called a particle in a box. The square well
represents, qualitatively, the situation of a free electron confined to the interior of a
metallic crystal, since the electron cannot simply jump out at the surfaces. In fact,
as we know, the potential well in a crystal is not infinite, because the electron can
be ejected from the solid, as in the photoelectric effect. The first task here is to
solve the time-independent Schrödinger equation to find the stationary states. The
eigenfunctions of Eq. (3.24) for this problem are determined in the same way as for
a uniform potential, but in this case we have

V (x) =
{

0 0 < x < L

∞ x ≤ 0; x ≥ L
. (3.39)

In the range 0 < x < L, the equation is identical to that of the free electron, and
therefore its solution is the same as in (3.29)

ψ(x) = A eik x + B e−ik x , (0 < x < L), (3.40)

and the energy eigenvalue is related to k as in (3.30), E = (�k)2/2m. For x ≤ 0 and
x ≥ L the wave function must be zero, ψ = 0, because the infinitely large potential
does not allow the electron to be in this region. Since the electron momentum, given
by−i�dψ/dx , cannot be infinite,ψ must be a continuous function in x, and therefore

ψ(x = 0) = 0, and ψ(x = L) = 0. (3.41)

These are the boundary conditions that are used to find the coefficients in
Eq. (3.40). Using the first condition in (3.41) in Eq. (3.40) we obtain B = − A,
hence we can write the eigenfunctions of the infinite square-well potential as

Fig. 3.2 Infinite square-well
potential

V(x)

xL0
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ψn(x) = An sin knx . (3.42)

The second condition in (3.41) imposed on (3.42) restricts the values of kn to

kn = n
π

L
, (3.43)

where n is an integer (n = 1, 2, 3, …). Thus, unlike the free electron, the electron in
the infinite square well potential cannot have an arbitrary energy value. The energy,
obtained using the condition (3.43) in E = (�k)2/2m, can only assume discrete
values, given by

En = �
2π2

2mL2
n2, (3.44)

where n is called a quantum number, because it determines the quantized values
of the energy. The values En are the energy eigenvalues, and the functions ψn are the
eigenfunctions of Eq. (3.24) for the infinite square-well potential. Figure 3.3 shows
a representation of the wave functions and the corresponding energies, for the first
four values of the quantum number n.

Some results of this simple problem are, at least qualitatively, of very general
validity for potential wells, regardless of their detailed form. They are:

1. Particles that have amotion confined to a limited region of space have stationary
stateswith discrete energies, i.e., they have quantized energies.Mathematically,
this results from the boundary conditions imposed to the wave functions at the

x x

x x
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Fig. 3.3 Wave functions and corresponding energies of a particle in an infinite squarewell potential,
for the first four values of the quantum number n
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limits of the region. This is the same reason forwhich a string attached at the ends
can only vibrate at certain discrete frequencies. The state with lowest energy is
called ground state.

2. The wave function of a state confined to a region of space has a certain number
of zeros, which increases with increasing energy.

Example 3.1 Aparticle is in the ground state in an infinite squarewell potential
of width L. Calculate: (a) The expectation values of the position x and of the
momentum px; (b) The mean square deviations of x and px.

(a) The wave function of the particle in the ground state is given by (3.42)
and (3.43) with n = 1, ψ = A sin(πx/L). For the normalization of the
wave function we use condition (3.1),

L∫

0

A2 sin2(
π

L
x) dx = A2 L

π

π∫

0

sin2 α dα = 1,

where α = πx/L . Using the relation sin2 α = (1 − cos 2α)/2, this gives

A2 L

π

π∫

0

1

2
dα − A2 L

2π

π∫

0

cos 2α dα = 1.

Since the second term is zero, this gives

A2 L

π

π

2
= 1, so that A =

√

2

L
.

The expectation value of the position x is calculated with Eq. (3.14). Thus,
we have

x̄ =
∞∫

−∞
ψ ∗ x ψ dx =

L∫

0

A2x sin2(
π

L
x) dx = 2

L

L∫

0

x sin2(
π

L
x) dx,

so that

x̄ = 1

L

L∫

0

x dx − 1

L

L∫

0

x cos(
2π

L
x) dx .
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The second term can be calculated with the following integration by parts

∫

x cos(ax) dx = 1

a2
cos(ax) + x

a
sin(ax),

where a = 2π / L. We can see that the integration from 0 to L in the second
term vanishes. Thus

x̄ = 1

L

[
x2

2

]L

0

= L

2
.

This result is, in some way, expected, because a particle that moves freely
between 0 and L has an average position at L/2.

The expectation value for the momentum is

p̄x =
∞∫

−∞
ψ ∗ (−i�)

∂ ψ

∂x
dx = −i�A2

L∫

0

sin(
π

L
x)

π

L
cos(

π

L
x)dx

= −i�A2 π

2L

L∫

0

sin(
2π

L
x) dx = 0,

This result is also expected, since a particle that moves back and forth in a
box with constant energy has zero average speed.

(b) The mean square deviation of x is defined by.

�x2 = 〈

x2 − x̄2
〉

.

For the particle in a box

�x2 = A2
L∫

0

(x2 − L2/4) sin2(
π

L
x) dx = A2

2

L∫

0

(x2 − L2/4) [1 − cos(
2π

L
x)] dx .

Thus

�x2 = A2

2

L∫

0

[(x2 − L2/4) − x2 cos(
2π

L
x) + L2

4
cos(

2π

L
x)] dx .
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The integral of the first term is simple to do, the integral of the third term is
zero, and to calculate the second term we use the expression

∫

x2 cos(ax) dx = 2x

a2
cos(ax) + a2x2 − 2

a3
sin(ax).

Using A2 = 2/L we have

�x2 = 1

L

[
L3

3
− L3

4
− 2L3

(2π)2

]

= L2

(2π)2

[
π2 − 6

3

]

= 0.033 L2.

The mean quadratic deviation of the momentum can be calculated in a
similar way. The result is

�p2x =
(

�π

L

)2

.

It is interesting to note that the uncertainties in the determination of the
position and of the momentum can be considered as the square roots of the
mean square deviations. Thus

�x =
(

�x2
)1/2 = √

0.033 L = 0.18 L ,

�px =
(

�p2x
)1/2 = �

π

L
.

The product of the two uncertainties gives

�x �px = 0.18π � = 0.57 �.

This result is consistent with the uncertainty principle, that establishes the
value �/2 for the lower limit of the product of the two uncertainties.

3.3.3 Potential Barrier: Tunnel Effect

Consider a free electron with energy E, moving in the+ x direction in a region where
the potential is zero for x < 0, and has at x = 0 a barrier, with V 0 higher than its
energy, as illustrated in Fig. 3.4. This is also called a step potential. The task here is
to find the wave functions in both regions, x < 0 and x > 0.

Since region 1 is semi-infinite, the electron energy is not quantized. The problem
is to find what happens when the electron encounters the potential barrier. In region
1, as in the previous example, the electron wave function is given by
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Fig. 3.4 Potential barrier V(x)

x

E

0

V0

21

ψ1(x) = A eik x + B e−ik x , (x < 0), (3.45)

where the wavenumber is related to the energy E as in (3.35), k = (2mE)1/2/�.
In region 2, Schrödinger equation leads to

∂2ψ2

∂t2
= 2m

�2
(V0 − E) ψ2. (3.46)

For V0 − E > 0, the solution of Eq. (3.46) is

ψ2(x) = C eγ x + D e−γ x , (x > 0), (3.47)

where

γ = [2m (V0 − E)]1/2/�. (3.48)

Notice that in the case E > V 0, the exponent in (3.48) is imaginary, and the two
terms in (3.47) represent propagating waves (Problem 3.6). However, in the case E <
V 0, that will be considered here, γ is positive, so that the first term in Eq. (3.47) grows
exponentially with x, while the second term decreases exponentially. To determine
the four constants A, B, C, and D, that appear in (3.45) and in (3.47), it is necessary
to use the boundary conditions for the wave function. For x → ∞, Eq. (3.47) shows
that if C is nonzero, ψ2 → ∞. Since the wave function cannot diverge, the constant
C must be null.

At x = 0, the wave functions in the two regions must be equal, because ψ is
continuous throughout space. With C = 0 in (3.47), we obtain from ψ1(0) = ψ2(0)

A + B = D. (3.49)

At x = 0, the derivative of ψ with respect to x must also be continuous

∂ψ1

∂x

∣
∣
∣
∣
x=0

= ∂ψ2

∂x

∣
∣
∣
∣
x=0

, (3.50)
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otherwise the kinetic energy, which is proportional to d2ψ /dx2, would be infinite at
x = 0. Using (3.45) and (3.47) in Eq. (3.50), we obtain

ik(A − B) = −γ D. (3.51)

With the two conditions (3.49) and (3.51) we can determine the amplitudes of the
reflected and transmitted waves in terms of the incident wave amplitude

B = k − iγ

k + iγ
A, D = 2k

k + iγ
A. (3.52)

Note that the constants B and A have the same modulus, meaning that the ampli-
tudes of the incident and reflected waves in region 1 are equal, so that the wave
function in region 1 is a standing wave. Since C = 0, in region 2 the electron wave
function is.

ψ2(x) = D e−γ x , (3.53)

which shows that, despite the fact that the incident electron has an energy smaller
than the potential of the barrier, there is a certain probability that the electron will
be found in region 2. This is a purely quantum effect, because classically a particle
would be fully reflected by a potential barrier larger than its energy. As illustrated in
Fig. 3.5, the amplitude of ψ2 decays exponentially with x but at some position x =
a the wave function ψ2 can be nonzero. Thus, if the barrier has a finite thickness a,
the probability that the electron crosses it is, approximately

|ψ2(a)|2 ≈ e−2γ a, (3.54)

This is a quantum phenomenon, called tunnel effect, because classically the elec-
tronwould only cross the potential barrier if therewere a tunnel under the barrier.Note
that the result (3.54) is approximate, because if we had considered the barrier width
finite from the beginning, we could not have done C = 0. However, if exp(−2γ a) is
sufficiently small, the amplitude C of the reflected wave at x = a is negligible and
the expression (3.54) is a good approximation for the rigorous result.

Fig. 3.5 Spatial behavior of
the wave function for a
particle with energy E,
incident on a potential
barrier with V0 > E

ψ(x)

xa0

e
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Example 3.2 Another important application of quantummechanics is that of a
particlewithmassm, subjected to an interaction of a simple harmonic oscillator
with potential energy

V (x) = 1

2
k x2 = 1

2
m ω2

0 x
2,

where ω0 = (k/m)1/2 is the natural frequency of the oscillator.
Show that the functions ψ0 = A0e−ax2 and ψ1 = A1 x e−ax2 are eigenfunc-

tions of the Schrödinger equation for the ground state and first excited state of
the harmonic oscillator and determine their energies.

The Schrödinger equation for the harmonic oscillator has the form

− �
2

2m

d2ψ

dx2
+ 1

2
m ω2

0x
2 ψ = E ψ.

For the ground state we have the following derivatives of ψ0

dψ0

dx
= −2a x A0 e

−a x2 ,

d2ψ0

dx2
= −2a A0 e

−a x2 + 4a2x2 A0 e
−a x2 .

Substitution of these derivatives in the Schrödinger equation above gives

− �
2

2m
(−2a A0 e

−a x2 + 4a2x2 A0 e
−a x2) + 1

2
m ω2

0x
2A0 e

−a x2 = E A0 e
−a x2 .

Dividing all terms by A0 e−a x2 we obtain

�
2

m
a − 2

�
2

m
a2x2 + 1

2
m ω2

0x
2 = E .

For this equation to be satisfied for any value of x, it is necessary that the
two terms in x2 cancel out. With this condition, we obtain for the parameter a

a = m ω0

2�
.

Substituting this expression in the previous equation, we obtain the energy
of the ground state.
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E0 = �
2a

m
= 1

2
� ω0.

We follow the same procedure to obtain the energy of the first excited state
with wave function ψ1. Calculating the second derivative with respect to x,
replacing in Schrödinger equation and diving all terms by the common factor
we obtain

− �
2

2m
(−2a x − 4a x + 4a2 x3) + 1

2
m ω2

0x
3 = E x .

In this case it is necessary to equate to zero separately all terms with the
same power in x. The term in x3 gives for the parameter a the same expression
obtained for the ground state, while the term in x gives

E1 = 3
�
2a

m
= 3

2
� ω0.

This is the energy of the first excited state, whose wave function is precisely
ψ1. The general solution of the Schrödinger equation for the harmonic oscil-
lator, which is presented in detail in the books on quantum mechanics, is given
by functions of the type,

ψn(x) = (c0 + c1x + c2x
2 + ... cnx

n) e−ax2 ,

where the function in parentheses is known as the Hermite polynomial. The
demonstration that this expression is an eigenfunction of the Schrödinger equa-
tion for the harmonic oscillator is done in an analogous manner to what we
did for n = 0 and n = 1, that correspond to the two lowest energy states. The
general solution shows that the energy of the excited state of order n is given
by

En = (n + 1/2) � ω0.

This is an important result that shows that the energy levels of the harmonic
oscillator states are equally spaced, with a difference between two consecutive
levels of � ω0.
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3.4 Electron in the Hydrogen Atom

One of the most important simple applications of quantum mechanics is in the
hydrogen atom. This was one of the first problems to which Erwin Schrödinger
addressed in the studies that led to his equation. The agreement he obtained with
the experiments and with the energy eigenvalues of the Bohr model was the first
important test of the validity of his theory.

The hydrogen atom is the simplest of all atoms, it has only one electron with
charge −e around a proton with charge + e. The potential energy that acts on the
electron due to the electrostatic interaction is

V (r) = − e2

4πε0

1

r
, (3.55)

where r is the distance between the electron and the proton. Despite the simplicity
of this potential, the solution of the Schrödinger equation is reasonably complicated
because of its three-dimensional nature. To solve the equation more easily, we use a
system of spherical coordinates, illustrated in Fig. 3.6 The electron position relative
to the proton is characterized by the coordinates r, θ, and ϕ. In spherical coordinates
the Laplacian operator that appears in the Schrödinger equation has the following
form.

∇2 = 1

r2
∂

∂r

(

r2
∂

∂r

)

+ 1

r2 sin2 θ

∂2

∂ϕ2
+ 1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

. (3.56)

To solve the Schrödinger Eq. (3.23) with the Laplacian operator (3.56) and the
potential V (r) in (3.55), we shall assume that the proton mass is infinitely larger than
the electron mass. This corresponds to say that the electron moves around a fixed
proton, so that the problem of two particles is reduced to just one. Thus, in Eq. (3.23)
we can neglect the kinetic energy of the proton, which would not be possible if its
mass were not very large. Since the potential (3.55) depends only on the variable r,
it is possible to find solutions of the Schrödinger equation in the form

Fig. 3.6 Spherical
coordinates r, θ, ϕ of point P
in the Cartesian coordinate
system (x, y, z)

z
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z
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y
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�(r, θ, ϕ) = R(r)�(θ)�(ϕ). (3.57)

With the function (3.57) it is possible to separate the partial differential equation
with three variables into three ordinary differential equations in the coordinates r, θ,
ϕ, by the method of separation of variables used to treat Eq. (3.19). Substituting the
function (3.57) into Eq. (3.23), and using the Laplacian operator in (3.56), we obtain
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Operating with the partial derivatives it follows that
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Notice that in this equation we have replaced the symbols of the partial derivatives
by those of total derivatives because the three functions depend only on one variable
each. Multiplying all terms by −2mr2 sin2 θ/(R�� �

2) and rearranging the terms
we have
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r2 sin2 θ [E − V (r)]. (3.58)

Now, since the left-hand side of this equation does not depend on r or θ, while
the right-hand side does not depend on ϕ, their common value must be a constant,
which we will designate by −m2

l . Thus, we obtain two equations

d2 �

dϕ2
= −m2

l �, (3.59)
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. (3.60)

Equation (3.59) can be solved with a function of ϕ, while Eq. (3.60) can be
rewritten in the form
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,
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which can also be separated in the variables r and θ. Using for separation constant l
(l + 1), we obtain two equations in the variables r and θ

− 1

sin θ

d

dθ

(

sin θ
d �

dθ

)

+ m2
l �

sin2 θ
= l(l + 1)�, (3.61)

1

r2
d

dr

(

r2
dR
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)

+ 2m

�2
[E − V (r)] R = l(l + 1)

R

r2
. (3.62)

Equations (3.59), (3.61) and (3.62) are now independent of each other and can
be solved separately. The complete solution for the electron wave function is the
product of the three solutions of those equations.

Let us first consider Eq. (3.59) for ϕ. Its solution is

�(ϕ) = eiml ϕ. (3.63)

Mathematically this function is a solution of Eq. (3.59) for any value of ml.
However, physically the wave function of the electron wave must have for ϕ = 0 the
same value as for ϕ = 2π, 4π, 6π, etc. This requires ml to have only the following
values

|ml | = 0, 1, 2, 3, . . . , (3.64)

that is,ml must be an integer, positive or negative, or zero. It is a quantum number.
The solutions of Eq. (3.61) and (3.62) are much more complex. However, they are
well-known equations, studied extensively in text books of advanced calculus for
physics and engineering students. The solutions of (3.61) are the so-called associated
Legendre polynomials, which are finite only if l is a positive integer number, limited
by

|ml | ≤ l. (3.65)

The solutions of the radial Eq. (3.62) are the Laguerre polynomials, which are
finite if the constant E is given by

E = − m e4

2�2(4πε0)2 n2
, (3.66)

where n is also an integer, which satisfies the relation

0 ≤ l ≤ n − 1. (3.67)

The constant E in Eq. (3.66) is the energy eigenvalue of the wave function in the
hydrogen atom. This result means that the electron energy in the hydrogen atom is
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quantized (discrete), similarly to what occurs in the infinite potential well studied in
Sect. 3.3. Substituting the physical constants in (3.66), we can express the energy in
eV as

E = −13.6

n2
eV (3.68)

Figure 3.7 illustrates the energy levels of the infinite potential well and the
Coulomb electron well in the atom (V = −A/r ). Note that in both cases the lowest
energy value is not the potential at the bottom of the well. Instead, it is a value above
the minimum, which is called called zero-point energy, or ground state energy.

The general solution of the Schrödinger equation for the electron in the hydrogen
atom is given by the product of the three functions in the variables r, θ, ϕ, solutions
of Eqs. (3.59), (3.61) and (3.62), which can be written as

�n l ml (r, θ, ϕ) = Rn l(r)�l ml (θ)�ml (ϕ). (3.69)

where

�ml (ϕ) = ei ml ϕ,

�l ml (θ) = sin|ml | θ × (polynomial in cosθ),
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Fig. 3.7 aRepresentation of a potential energywell of an electron due to the electrostatic interaction
with the nucleus of an atom, indicating the positions of the energy eigenvalues. b Energy levels in
an infinite square-well potential
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Rn l(r) = e−C r/n r l × (polynomial in r),

where C is a constant. Although the energy eigenvalues of the electron in the atom
with Coulomb potential depend only on the quantum number n, the wave functions
also depend on l and onml. The fact that there are three quantum numbers, instead of
just one, as in the square well potential studied in Sect. 3.3, is a consequence of the
fact that the Schrödinger equation for the atom contains three independent variables.
Grouping the conditions (3.64), (3.65) and (3.67), we can write the relationships
between the quantum numbers in the form.

Principal quantum number: n = 1, 2, 3, . . .

Azimuthal quantum number: l = 0, 1, 2, . . . , n − 1

Magnetic quantum number: ml = −l,−l + 1, ..0, . . . , l − 1, l

The reason for l to be called the azimuthal quantum number is because it deter-
mines the angular variation of the electron wave function. On the other hand, ml is
called the magnetic quantum number, because it defines the separation of the energy
levels when the atom is placed in a magnetic field. Table 3.2 shows the normal-
ized eigenfunctions corresponding to the first three values of n for an atom with the
nucleus charge of + Ze (Z is the atomic number), and only one electron. The wave
function �100 corresponds to the state with minimum energy, the ground state.

Notice that the wave functions�200,�210, and�21±1 are quite different from each
other, but they have the same energy, since they all have the same principal quantum
number, n = 2. States with different wave functions that have the same energy are
called degenerate. It is common to find solutions to the Schrödinger equation that
are degenerate states.

To understand the meaning of the electron eigenfunctions in the hydrogen atom,
let us calculate some of their associated quantities. The first is the probability density
function � ∗ �. It is not simple to plot this function in three coordinates simultane-
ously, so we will consider each one separately. Initially we consider the dependence
on r. Since the probability of finding the electron in the elementary volume d3r is
� ∗ �d3r , it does not make much sense to study the behavior of �*� only, because
in spherical coordinates d3r = r2sinθdrdθdϕ also depends on r. Thus, we consider
the radial probability density P(r), defined as the probability of finding the electron
with the radial coordinate between r and r + dr. For the wave function �nlml , this
probability density is given by (Problem 3.16)

Pnl(r) = r2Rnl
∗ (r) Rnl(r), (3.70)

where the factor r2 is due to the volume of the region between the spheres of radii r
and r + dr. Note that the quantum number ml does not influence the radial density
because the function exp(imlϕ) disappears in the product with its complex conjugate.
Figure 3.8 represents the radial probability density of the electron in the hydrogen
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Table 3.2 Eigenfunctions of an atom with one electron around a nucleus with Z protons, for the
first values of the principal quantum number n

Quantum numbers Eigenfunction

n l ml

1 0 0
ψ100 = 1√

π

(
Z
a0

)3/2
e−Zr/a0

2 0 0
ψ200 = 1

4
√
2π

(
Z
a0

)3/2(

2 − Zr
a0

)

e−Zr/2a0

2 1 0
ψ210 = 1

4
√
2π

(
Z
a0

)3/2
Zr
a0
e−Zr/2a0 cos θ

2 1 ±1
ψ21±1 = 1

8
√

π

(
Z
a0

)3/2
Zr
a0
e−Zr/2a0 sin θ e±iϕ

3 0 0
ψ300 = 1

81
√
3π

(
Z
a0

)3/2
(

27 − 18 Zr
a0

+ 2 Z2r2

a20

)

e−Zr/3a0

3 1 0
ψ310 =

√
2

81
√

π

(
Z
a0

)3/2(

6 − Zr
a0

)
Zr
a0
e−Zr/3a0 cos θ

3 1 ±1
ψ31±1 = 1

81
√

π

(
Z
a0

)3/2(

6 − Zr
a0

)
Zr
a0
e−Zr/3a0 sin θ e±iϕ

3 2 0
ψ320 = 1

81
√
6π

(
Z
a0

)3/2
Z2r2

a20
e−Zr/3a0

(

3 cos2 θ − 1
)

3 2 ±1
ψ32±1 = 1

81
√

π

(
Z
a0

)3/2
Z2r2

a20
e−Zr/3a0 sin θ cos θ e±iϕ

3 2 ±2
ψ32±2 = 1

162
√

π

(
Z
a0

)3/2
Z2r2

a20
e−Zr/3a0 sin2 θ e±2iϕ

The parameter a0 = 4πε0�
2/me2 is the Bohr radius

atom with the eigenfunctions for n = 1, 2 and 3, using dimensionless quantities in
both axes. The figure shows clearly that the electrons are not particles with well-
defined orbits, as predicted in the Bohr model. In fact, each electron occupies a large
region around the nucleus, with a distribution in space such that it has a maximum
probability to be found at a certain radius, with a value that increases with n. Let us
calculate the radius of maximum probability density for the ground state (n = 1),
that is, the state of minimum energy. Using in Eq. (3.70) the radial function R10 (r)
of the eigenfunction �100 in Table 3.1, with Z = 1, we have

P10(r) = e−2r/a0r2, (3.71)

which is proportional to the function represented by the curve in the upper panel of
Fig. 3.8. The maximum of this function is obtained with

dP10(r)

dr
= 2r e−2r/a0(1 − r/a0) = 0. (3.72)
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Fig. 3.8 Radial probability density of the electron in the hydrogen atom for the values of the
quantum numbers n and l indicated. Note that in the three cases for which l = lmax = n − 1, the
maximum occurs at a radius r/a0 = n2, indicated by the dashed line

Thus, the radius of maximum probability density of finding the electron in the
ground state is

r = a0 = 4πε0�
2

me2
≈ 0.53

◦
A (3.73)
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which is exactly the Bohr radius. This is another strong argument for demonstrating
the consistency of the Schrödinger formulation of quantummechanics with the Bohr
model for the atom.

The angular variation of the probability density can be represented in several
differentways.Oneof themuses a polar plot, inwhich the amplitude of the probability
density of finding the electron at the position x, y, z is represented by the distance
of this point to the origin. Figure 3.9 shows the polar plots corresponding to the
quantum numbers l = 0 and l = 1. These plots provide a view of the electronic shell
in each state. They clearly show that the electron is not characterized by an orbit in
the classical sense, but by a probability density of being found at each position. The
variation in the probability density with angular position suggests the name orbital
to designate the atomic wave functions. Since the quantum number l determines
the form of the angular variation of the orbital, it is a very important number that
is designated by letters used to denote the radiation emission spectral lines of the
hydrogen atom. The orbitals with l = 0, 1, 2, 3, 4, … are designated by the letters s,
p, d, f, g, …

Figure 3.10 shows another way of representing the angular and radial variations
of the electron probability densities, corresponding to the first four energy levels in
the hydrogen atom. This representation takes into account the dependencies of the
states with the angle and also with the radial distance to the nucleus.

Before closing this section, it is necessary to mention two important facts related
to the hydrogen atom: The first is that the electron has, in addition to mass m and
charge −e, another property, the spin. As the names implies, classically the spin
would correspond to a rotation of the electron around itself, analogous to the rotation
of the planet Earth around itself. However, the electron is not a particle in the classical
sense, so there is not much sense in speaking of a rotation around itself. The spin is

para orbital s

para orbital px para orbital py para orbital pz

Fig. 3.9 Illustration of the function |�(θ)�(ϕ)|2, that represents the electronic probability densities
in the hydrogen atom for l = 0 and l = 1
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m = 0    

m = 0    

Fig. 3.10 Illustration in different scales of the probability densities of the electron states in the first
four energy levels in a hydrogen atom

a quantum entity, with no classical analog, which arises naturally from a relativistic
quantum theory. The electron spin is characterized by a fourth quantum number ms,
that can have two values, + 1/2 or −1/2, each one would correspond to a rotation in
one sense around an axis, or in the opposite sense. In the classical view, the rotation
of a charged particle around itself also gives rise to a magnetic moment. Thus, in
addition to the spin, the electron also has a magnetic dipole moment. For this reason,
the potential that appears in the Schrödinger equation for the hydrogen atom is
actually more complex than Eq. (3.55). Consequently, its solution is more complex
than the one presented here. However, since the effect of the spin is relatively small,
the calculation of the energy levels of the hydrogen atomcan be treated approximately
with perturbation theory. The main result is that the energy of the electron does
not depend only on the quantum number n, it also depends on the orbital quantum
number l. However, the separation between the energy levels of states with the same
n and different ls is small compared to the separation of states with different ns.

The other important note is about transitions of the electron between states. When
the electron is “placed” in a certain state characterized by an eigenfunction of the
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Schrödinger equation, if there is no disturbance in the atom the electron remains
indefinitely in that state. A possible disturbance is that of electromagnetic radiation,
which contributes to the Schrödinger equation with a time-varying potential. As we
shall see in Chap. 8, quantum theory shows that the electronmay undergo a transition
to a state of higher energy by absorbing a photon of frequency ν, provided that the
difference between the energies of the final state f and the initial state i is equal to
the energy of the photon, that is

E f − Ei = h ν. (3.74)

This expression is just a result of the energy conservation equation. The electron
can also go from a higher to a lower energy state through the emission of photons
with frequency given by ν = �E/h, where �E is the energy difference between the
two levels. The measurements of the absorption and emission spectra of light in the
beginning of the twentieth century were very important to show that a new theory for
the hydrogen atom was needed to explain the observations. Later, the comparison
of the experimental results with the theoretical calculations were decisive for the
acceptance of the quantum theory. Even today, optical spectroscopy techniques are
widely used for the study and identification of atoms, molecules and solids.

Figure 3.11 shows several transitions between some of the lower energy levels
in the hydrogen atom. Quantum theory shows that transitions between states with
emission or absorption of photons can only occur if the orbital quantum numbers
of the initial and final states differ by 1, �l = ±1. This is called a selection rule
for the transitions in an atom. Only when two states have orbital numbers differing
by �l = ±1, the electric field of the radiation manages to induce an electric-dipole
transition between them. For this reason, the lines representing the transitions in

Fig. 3.11 Representation of
the electronic transitions in a
hydrogen atom with
absorption or emission of
photons. The diagonal lines
represent the transitions
allowed by the electric
dipole selection rules. The
corresponding wavelengths
are indicated in nanometers
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Fig. 3.11 are diagonal, not vertical. If the electric field is linearly polarized, another
selection rule is �ml = 0. However, if the electric field is circularly polarized, the
selection rule is �ml = ±1.

3.5 Atoms with Many Electrons

In atoms with more than one electron the potential that enters in the Schrödinger
equation is much more complicated than in the hydrogen atom. This is due to the
fact that each electron interacts not only with the nucleus, but also with the other
electrons. Thus, the “motion” of an electron, and therefore its wave function, affects
all other electrons. It is possible towrite the Schrödinger equation for all electrons, but
it cannot be solved analytically. The solutions can only be obtained approximately,
and with the use of computer numerical calculations.

There are several approximate methods to solve Schrödinger equation for an
atom or a crystal. One of the simplest is the mean field method, proposed by D. R.
Hartree, that is essentially the following: the Schrödinger equation is written for a
certain electron taking into account the interactionwith the nucleus andwith the other
electrons. However, the interaction potential with the other electrons is considered
only on an average, and the problem is solved in steps. In the first step the wave
function for a certain electron is calculated assuming a tentative average interaction
potential due to the other electrons. In the following steps the wave function for each
electron is calculated sequentially, and the average potential is modified with the
electronic densities calculated in the previous steps. This process is repeated several
times, until the differences between thewave functions obtained in consecutive cycles
are negligible. At the end one obtains a consistent set of eigenfunctions, as well as
the corresponding electronic energies.

Once the atomic orbitals are obtained, the next question is: how are the electrons
of the atom distributed in these orbitals, that is, in the energy levels? The distribution
is based on two fundamental principles: the first is that electrons must occupy the
lowest possible energy states. However, they cannot all go to the ground state, due
to the Pauli exclusion principle. According to this principle, two electrons cannot
occupy exactly the same state. Since each electron can have a spin ms = ±1/2,
the distribution in the atom is done by filling the lower energy states, starting from
the ground state, successively with two electrons each. Thus, the lowest energy
configuration of an atom with atomic number Z, has two electrons with quantum
numbers n = 1, l = 0, ml = 0, two electrons with n = 2, l = 0, ml = 0, two with n
= 2, l = 0, ml = − 1, two with n = 2, l = 0, ml = + 1, and so on. Since an orbital l
can have ml = 0,±1, .... ± l, it can accommodate 2(2 l + 1) electrons. To facilitate
the notation, the orbitals are represented by letters corresponding to the values of the
quantum number l. The orbitals corresponding to l = 0, 1, 2, 3, 4 … are denoted by
s, p, d, f, g, … respectively. Likewise, the quantum number n is designated by a letter
that represents the “shell”, with the letters K, L, M, N, O, … associated respectively
to n = 1, 2, 3, 4, 5, ….
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The element whose atom has one electron is hydrogen. In the ground state the
electron of the H atom has one orbital represented by 1s. In the element with two
electrons, helium, both electrons have 1s orbitals, one with spin + 1/2 and one with
− 1/2. Thus, the ground state is represented by 1s2, where the superscript denotes
the number of electrons in the orbital. Since in the K shell, of orbital 1s, only two
electrons can fit, the helium atom is formed by a “closed shell” with zero spin. This
fact gives He a great chemical stability, which is the reason for it to be called a
noble gas. The next atom is the one of lithium, with three electrons and therefore
represented by the notation 1s2 2s. Since the two electrons 1s2 form a closed shell,
the third electrons can easily get loose in solid Li and move about the atoms, so that
Li is a metal. Thus, for each element the electrons successively fill in the orbital states
with lower energies and give the elements their own chemical characteristics. It is
important to note, however, that several elements have similar chemical properties,
since there is a periodic repetition in the formation of shells. For example, the argon
atom has ten electrons, with the configuration 1s2 2s22p6. Thus, Ar has two closed
shells, K and L, and has properties similar to helium. On the other hand, sodium, with
eleven electrons, has configuration 1s22s22p63s, and has properties similar to those
of lithium. This periodicity of behavior with the atomic number is the reason for the
name Periodic Table, in which the elements are organized, as in Table 3.3. This Table
shows the atomic number of each element, as well as the number of electrons and the
corresponding orbitals of the last occupied shells. The Periodic Table in Appendix
C contains other important properties of the elements.

Table 3.3 Periodic Table of the elements

The spectroscopic notation indicates the number of electrons and the corresponding orbitals of the
last occupied shells
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Problems

3.1 Show that the sum of the wave functions ψ1 = A eik x−iωt and ψ2 =
B e−ik x−iωt is a solution of Schrödinger Eq. (3.17) for a particle with mass
m in a constant potential, V = V 0, and obtain the relation between k and ω.

3.2 Calculate the constants A1 and A2, defined in Eq. (3.42), in order to normalize
the two lowest energy eigenfunctions of a particle in an infinite square well
potential.

3.3 Calculate the difference in energies, in eV, of the two lowest energy states of
an electron in an infinite square well potential of width: (a) L = 30 Å; (b) L
= 1 cm.

3.4 Consider an electron in an infinite square well of width L, in the first excited
state. Calculate.

(a) The expectation value of the electron position x.
(b) The mean square deviation of the position �x2 = 〈

x2 − x̄2
〉

.
(c) The expectation value of the momentum px.
(d) The mean square deviation of the momentum.
(e) The product of the two uncertainties �x �px.

3.5 An electron moves at a constant speed towards a potential barrier, like the one
illustrated in Fig. 3.4. Considering the electron energy E larger that the height
of the barrier V 0, calculate the probabilities for the electron to be reflected
and to be transmitted into the barrier, as a function of E and V 0. Obtain the
numerical values for E = 2 V 0.

3.6 An electron moves with energy E in a multilayer formed by two thick films
of a semiconductor A, separated by a thin film of thickness d of another
semiconductor B. In a first approximation, the potential seen by the electron
is as shown in the figure below.

(a) For E > V 0, calculate the probability of the electron, initially in the left
layer A, to cross layer B perpendicularly and to reach the right layer A.

(b) What is the condition for the probability calculated in a) to be equal to
1?

(c) Calculate the thickness d so that the probability for the electron to cross
the barrier is 1, for E = 1.0 eV and V 0 = 0.8 eV.

(d) For E = 1.0 eV, V 0 = 1.2 eV, and the value of d obtained in c), calculate
the probability for the electron to go through layer B.
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3.7 Consider the situation of Problem 3.6 with E < V 0. Calculate the probability
that the electron will go through layer B for E = 1.0 eV, V 0 = 1.2 eV and d
= 5 Å (tunnel effect).

3.8 Obtain the wave function and the energy of the second excited state of a
simple harmonic oscillator. (Suggestion: use the polynomial function at the
end of Example 3.2 with n = 2).

3.9 Calculate the energies, in eV, of the states of the hydrogen atom with n =
1, 2, 3, and obtain the frequencies, in Hz, of all possible transitions between
these levels.

3.10 (a) Show that thewavelength of the photon absorbed, or emitted, in a transition
between the levels n1 and n2 in a hydrogen atom is, in Angstroms,

λ(
◦
A) = 911 n21n

2
2

n22 − n21
.

(b) Compare the result obtained in Problem 3.9 for the levels n = 2 and n =
3 with this expression. In which region of the electromagnetic spectrum is
located the radiation involved in this transition?

3.11 The attraction of an electron by a hole in a semiconductor can be described
by the coulomb potential

U (r) = − e2

4πε r
,

where ε is the electric permissivity of the material and r the distance between
the electron and the hole. In contrast to hydrogen, where the proton is much
heavier than the electron, here the energy levels depend on the reduced mass
μ of the electron–hole pair, and are given by

En = Ec − μ e4

2�2(4πε)2n2
,

whereEc is the energy of the conduction band. ForCu2O,which has ε = 10ε0,
the frequencies of the corresponding transitions obtained experimentally can
be described by

ν
(

cm−1
) = 17 508 − 800

n2
.

(a) From the results above, determine the reducedmass of the electron–hole
pair;

(b) Determine also the average radius of the orbital for the state ψ100;
(c) Draw the energy levels relative to the energy of the conduction band.
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3.12 Check, by direct substitution, that the eigenfunction ψ100 for the hydrogen
atom, given in Table 3.2, is a solution of the time-independent Schrödinger
equation, and obtain the values of the constants a0 and E.

3.13 Show that the eigenfunctionsψ100 andψ211 given inTable 3.2 are normalized.
3.14 From the expression of the angular momentum operator given in Table 3.1,

it can be shown that in Cartesian coordinates its component z is given by

Lz op = −i� ∂/∂ϕ,

and its module squared is

L2
op = −�

2

[
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+ 1

sin2 θ

∂2

∂ϕ2

]

.

(a) Show that the eigenfunctionsψnlml of the hydrogen atom are also eigen-
functions of Lzop, and give an interpretation for the quantum number
ml.

(b) Show that they are also eigenfunctions of L2
op, and interpret the

quantum number l [Suggestion: use the expression above combined
with Eq. (3.61)].

3.15 An electron in the hydrogen atom has a wave function

ψ = A(6 − r/a0)
r

a0
e−r/3a0 sin θ eiϕ.

Calculate the electron energy by substituting this function into the
Schrödinger equation.

3.16 Calculate the integral of the probability density �*� in the volume between
the spheres of radii r and r + dr, for the wave function of the hydrogen atom
given by Eq. (3.69), and show that the radial probability density is given by
Eq. (3.70).
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Chapter 4
Electrons in Crystals

In this chapter we use quantum mechanics to introduce the concept of energy bands
in solids, that is essential to explain why, in terms of the electric properties, materials
behave as metals, insulators, or semiconductors. We then present the meaning of the
electron effective mass and study the behavior of electrons based on the statistical
Fermi–Dirac distribution. Finally, we discuss the mechanism of the electric current
in conducting materials and calculate the electric conductivity in terms of material
parameters.

4.1 Energy Bands in Crystals

In this Chapter we study some basic properties of electrons in crystals, which are
essential for the understanding of the mechanisms responsible for the electric current
in materials and, therefore, for its use in Electronics.

As we saw in the previous chapter, an electron in an isolated atom has stationary
quantum states characterized by discrete and quantized energy levels, corresponding
to the atomic orbitals designated by 1s, 2s, 2p, 3s, 3p, 3d, etc. In an atom with
many electrons, the ground state is obtained by distributing the various electrons in
the lowest possible energy levels, obeying the Pauli Exclusion Principle. Since the
electron has spin, each orbital state may accommodate two electrons with opposite
spins. The question we now ask is: how are the electronic states modified when a
large number of atoms approach each other to make a crystal?

The problem of finding the quantum states in a crystal is much more complicated
than in an isolated atom, since the outer electrons of each atom also interact with the
electrons of neighboring atoms. A crude explanation of what happens is as follows:
When two isolated atoms are brought into close proximity, the energy levels of a
certain state in the two atoms are slightly disturbed by the presence of the neighbor,
resulting in two closely spaced levels. This is analogous to what happens when two
identical oscillators are weakly coupled, they may oscillate in two close frequencies.
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86 4 Electrons in Crystals

Thus, if a large number of atoms are brought into close proximity, the energy levels
of the electrons in the same state in different atoms form an almost continuous
energy band. This is illustrated in Fig. 4.1, showing the variation of the energies of
the electronic states with the interatomic distance for N sodium atoms, that have
electronic configuration 1s2 2s2 2p6 3s. For very large distances the energy levels
of equivalent states coincide, and are the same as those of an isolated atom. As the
distance decreases, the levels split due to the interaction with the neighbors, giving
rise to several energy bands. At the equilibrium separation distance a, there are four
bands, each corresponding to an orbital state. Since each shell with quantum orbital
number l has 2(2 l + 1) states, the number of states in a band is 2(2 l + 1)N. This
description of the origin of the energy bands in crystals is very crude and hides
some essential features of the electronic states. Actually, it is the wave nature of the
electrons in crystals that gives rise to the energy bands, in a manner analogous to the
formation of the various branches in the dispersion relation of elastic waves, such as
those in Fig. 2.10.

The quantum calculation of electronic states and energies in a solid is quite
complex, and can only be done with several approximations to the problem. The
first is to assume that the nuclei of the atoms are fixed and with known positions in
the crystal structure. Another one is to consider that the problem involves a single
electron (one-electron model), and that all other electrons are considered an inte-
gral part of the ions that create a periodic potential. This is illustrated in Fig. 4.2,
which shows qualitatively the potential seen by an electron along an axis in the
crystal. The periodic potential to which the electron is subjected leads to solutions
of the Schrödinger equation with energies that form bands. Since the solution for a
periodic potential, even the simplest ones, is complex, let us understandwhat happens
with an approximate model. In the case of alkali metals, such as sodium, the electron
3s of the last shell “sees” a potential of the nucleus that is shielded by the electrons

Fig. 4.1 Illustration of the formation of bands of energy levels due to the proximity of N sodium
atoms
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Fig. 4.2 a Potential energy V for an electron moving along the x axis of the crystal shown in (b)

of the inner shells, so that it is almost free. For this electron we can assume, in a first
approximation, that the potential is a well with infinite walls at the surfaces of the
crystal and constant inside it, as in Fig. 3.2. In this case, as we saw in Sect. 3.2, the
electron wave functions are of the type

�(�r , t) = A ei
�k·�r−iωt , (4.1)

where its energy is

E = �ω = �
2 k2

2m
, (4.2)

and the wave number k has discrete values as in Eq. (3.43), kn = n π /L, where L is the
dimension of the crystal in the direction of propagation. The dispersion relation (4.2)
is represented by the dashed curve in Fig. 4.3. However, since the potential is not
uniform inside the well, its small periodic variation has an effect on the electron wave
function and consequently on the dispersion relation (4.2). This effect is noticeable
in periodic ranges in k-space, and can be understood with an analogy to the effect
of a diffraction grating on light. Considering the periodicity of the crystal in one
dimension, the waves most affected are those that have a wave number satisfying the
Bragg condition for diffraction

2a sin θ = mλ = m 2π/k. (4.3)

Electronwaves that satisfy the condition (4.3) are reflected by the crystal, resulting
in standing waves. Depending on the spatial configuration of the standing wave
relative to the lattice, it can have two energy values. Thus, at the points k = mπ /a,
where m is a positive or negative integer, the dispersion curve separates in two
branches. This gives rise to the solid lines in Fig. 4.3, which represent the electron
dispersion relation in the periodic potential. The separation of the curves results in
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Fig. 4.3 Dispersion relation for electrons in a crystalline periodic potential in the almost free-
electron model

energy bands for the electronic states. This means that electrons can only occupy
states with energy in one of the bands in Fig. 4.3.

The model of a solid as a potential well with almost free electrons is a reasonable
approximation for a metal like sodium. However, more generally the electron wave
functions do not have the simple plane wave form of Eq. (4.1). Despite this, the
problem can still be treated with plane waves because of a general result of great
importance, the Bloch’s theorem, that applies to systems that are invariant under
translations. Let us suppose that the interactions on an electron can be represented
by an effective one-electron potentialU (�r), that is constant in time. Since the atoms,
or ions, in a crystal are arranged in a regular periodic array, this potential is invariant
under translations by a multiple of a primitive cell unit vector, i.e.,

U (�r + n�a) = U (�r), (4.4)

where n is an integer. In this case, it is possible to show that the time-independent
Schrödinger equation with a potential that has translation symmetry, as in (4.4), has
solutions of the type

ψ(�r) = ei
�k·�r uk(�r), (4.5)

where uk(�r) is a function with the same periodicity as U (�r). This wave function
represents a plane wave, whose amplitude is modulated by a periodic function that
reflects the effect of the crystalline potential. The functions (4.5) are called Bloch’s
functions. This result, that can be demonstrated by replacing the function (4.5) in the
Schrödinger equation, is of great importance in crystals, as it applies to any type of
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excitation. The elastic waves studied in Chap. 2 are an example that (4.5) applies to
a periodic atomic chain. In the case of electrons, the important consequence of (4.5)
is that in a crystal they are described by waves, characterized by a wave vector �k and
an energy Ek . The energy is a function, not only of the modulus of the wave vector,
but also of its direction in the crystal. Since the wave vector can have any direction in
k-space, in general the variation of Ek with k is represented for the main symmetry
directions in the crystals. Thus, Fig. 4.3 can represent the variation of energy with
the wave vector in the direction [100] of a cubic crystal. This way of representing
the energy of the electronic states is called the extended zone scheme.

Another more useful way of representing the energy bands is in the so-called
reduced zone scheme. Consider initially a simple one-dimensional model, as in
Fig. 4.3. The points in a one-dimensional wave vector space with coordinates
n2π /a, where n is an integer, form a periodic array called reciprocal lattice. In
three dimensions each space lattice as in Fig. 1.4 has a different reciprocal lattice.
The primitive cell of each reciprocal lattice is called first Brillouin zone (BZ). In
the one-dimensional model, the first Brillouin zone corresponds to wave numbers in
the range − π /a < k < π /a, while the second Brillouin zone corresponds to − 2π /a <
k < − π /a, etc. Thus, as shown in Fig. 4.4a, an electron state with wave number k’ in
the range π /a < k’ < 2π /a is in the second BZ, and has energy in another band. But
then, if we subtract from k’ a wave number G = 2π /a, this results in a wave function
that is identical to that of k = k’ − G, because of the result (4.5). Thus, it is possible
to translate the bands in the momentum space by a multiple of G, that is, n2π /a,
in order to represent all bands in the first Brillouin zone. This operation, shown in
Fig. 4.4 for the first bands, results in the reduced scheme to the first zone. In this
scheme it is evident that there are no electronic states between the energy bands. For
this reason, the regions between the bands are called forbidden-energy gaps, or just
energy gaps.

In the case of a three-dimensional crystal, the representation of the bands is a
little more complicated. Figure 4.5a shows the surfaces that limit the first Brillouin

Fig. 4.4 a Illustration of the displacement of the two bands in the second Brillouin zone by±2π/a.
b Reduced first-zone scheme resulting from the displacement
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Fig. 4.5 a First Brillouin zone of a fcc crystal. b Calculated energy band structure of fcc copper.
The Fermi energy EF will be defined in Sect. 4.4. Reprinted with permission from B. Segal, Phys.
Rev. 125, 109 (1962). Copyright (1962) by the American Physical Society

zone of a face-centered cubic lattice. Figure 4.5b shows the energy band structure of
crystalline copper with the fcc lattice. Evidently, in the three-dimensional crystal it is
not possible to represent the variation of the energy in all directions of �k. Then, one
chooses the main directions of �k in the first Brillouin zone, shown in Fig. 4.5a. The
horizontal axis is segmented and in each section one represents the energy bands for
onemain symmetry direction, indicated by the letters that designate the characteristic
points of the Brillouin zone. Note that for each wave vector �k the electron can have
several wave functions, each with an energy in a different band.

To close this section, we note that due to the boundary conditions on the crystal,
k cannot assume an arbitrary value. The allowed values are discrete, as in the infinite
square well potential, so that the number of states in each band is finite. If the number
of primitive cells in the crystal is N, each band contains 2 N electronic states, where
the factor 2 is due to the two possible spin states. This result comes from Eq. (3.43)
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generalized for three dimensions. In one dimension, k can assume the values k = m
π /N1a, where N1 is the number of primitive cells of size a along the length of the
crystal. Since m is a positive integer, in the range between 0 and π /a there are N1

different values for k, and therefore, the number of electronic states in each band
is 2N1. Note that if we allow k to have positive or negative values, as it is more
appropriate for a travelling wave like (4.1), it is necessary to change the boundary
conditions so that k = m2π /N1a, where m is a positive or negative integer. But this
does not change the number of electronic states in each band.

The formation of the ground state of the crystal is done by filling the discrete
levels of lower energy states with electrons, analogously to what occurs in an atom.
Aswewill see in the next section, the result of this filling process determines whether
the solid is an electric insulator or a conductor.

4.2 Conductors, Insulators and Semiconductors

In a crystal with n electrons, the ground state is obtained by filling the lowest energy
levels with only one electron in each state, so as to satisfy the Pauli exclusion prin-
ciple. Since there are 2 N states in each band, the number of occupied bands in the
ground state is n/2 N. Considering that n/N is the number of electrons per primitive
cell, this is an integer number, and therefore n/2 N is an integer or half-integer. Thus,
in a crystal at 0 K, there are several bands completely filled with electrons, and the
last (upper) one is necessarily filled completely or in half. The conducting properties
of the crystal depend essentially on whether the last band is full or not. The reason is
that the wave vector can have any direction in k-space and the bands are symmetrical,
so that

∑

all states
in a band

�k = 0. (4.6)

The electric insulators, which are materials that do not conduct electric current,
are made of crystals that have the last band completely filled. In these crystals, the
application of an external electric field cannot change the total electron momentum,
which is null, since all available states are occupied. In this case there is no net
electron flow when the field is applied and thus no electric current. So, the necessary
condition for a crystal to be insulating is that it has an even number of electrons per
unit cell (the condition is not sufficient, as we shall see below). Figure 4.6a shows
a possible distribution of the last energy bands in an insulating crystal and their
occupation by electrons. The energy level above which there are no occupied states
at a temperature T = 0 K is called the Fermi level, EF . In Sect. 4.4 we shall discuss
in more detail the important role that the Fermi level plays in the properties of solids.

Conductors, also called metals, are materials in which at T = 0 K the electrons
flow under the action of an electric field producing an electric current. The condition
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Fig. 4.6 Energy band structure and occupation of the electron states in insulators (a) and in metals
(b). The colored regions represent the occupied bands

to be a conductor is to have the last band partially filled. This occurs whenever the
number of electrons per primitive cell is odd. In this case it is possible to change the
states of the electrons with an electric field, resulting in an electric current. In this
category are the alkali metals (Li3, Na11, K19, etc.) and the noble metals (Cu29, Ag47,
Au79), that have an odd number of electrons. In this case, as shown in Fig. 4.6b, the
energy band above the last full band is only partially filled. As shown in Fig. 4.6b,
in metals the Fermi level is located in the middle of the last occupied energy band.

It is also possible to have ametal formedby atomswith an evennumber of electrons
in the unit cell, such as the alkaline earth metals (Be4, Mg12, Ca20, Sr38, Ba56). In
these metals, the distribution of bands is not as simple as those in Fig. 4.6. As shown
in Fig. 4.7, in these materials band 1, which would normally be the last full one,
has its maximum above the minimum of the next band 2. Since the electrons occupy
the lowest energy states, the electrons that would be at the top of band 1 actually
occupy states in band 2, so that both bands are partially filled. In these materials,
the application of an external electric field causes electrons to change states, which
results in an electric current. Therefore, they are also conductors, but not as good as
the alkali metals. For this reason, they are also called semimetals.

In an insulating crystal, only at a temperature T = 0 K, the last occupied band,
called valence band, is completely filled. When the temperature is above 0 K, elec-
trons in the valence band can gain enough thermal energy to jump to the next band,

Fig. 4.7 Energy band
structure and occupation of
states in a semimetal
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Fig. 4.8 Valence and
conduction bands in a
semiconductor. The colored
regions represent the
electron occupation of states
at T > 0 K. The distance
between the bands is the
energy gap Eg

called conduction band, which was empty at T = 0 K. The transfer of electrons to
the conduction band leaves in the valence band vacant states that behave as carriers
of positive electric charge, called holes. Electrons in the conduction band and holes
in the valence band produce electric current under the action of an external elec-
tric field. The conductivity of the material depends on the number of electrons that
are excited into the conduction band, which can be calculated probabilistically, as
we shall see in the next section. This number increases with increasing temperature
and also with decreasing in the energy separation of the two bands. The difference
between the minimum of the conduction band (Ec) and the maximum of the valence
band (Ev) is called energy gap, represented by Eg. Materials that are insulating at
0 K but have a relatively small Eg, on the order of 1 eV or less at room temperature,
have significant conductivity and are called semiconductors. Figure 4.8 illustrates
the occupation of the valence and conduction bands in a semiconductor at T > 0.
In these materials the number of electrons in the conduction band can be significant
compared to an insulator, but it is still much smaller than the number of free electrons
in a metal. Therefore, the conductivity of semiconductors is much smaller than in
metals. The main difference between an insulator and a semiconductor is in the value
of Eg. For example, silicon has Eg = 1.1 eV and is a semiconductor, while diamond,
which has the same structure as Si, formed by C atoms, has Eg = 5 eV, and is an
excellent insulator. Silicon oxide, SiO, has Eg = 8 eV and is also an insulator. The
difference in the values of Eg may not seem so big to produce such a radical change
in conductivity. However, as we will see later, the occupation of the conduction band
decreases exponentially with the increase of the ratio Eg/kBT.

4.3 Effective Mass

For the study of the electric properties of metals and semiconductors, it will be
necessary first to understand how an electron behaves in a crystal under the action
of an external electric field. As discussed in Sect. 3.3.1, the electron is described by
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a wave packet that propagates with group velocity vg = ∂ω/∂k. Since the electron
energy is E = �ω, we can write

∂E

∂k
= � vg. (4.7)

If the electron is subjected to a force F, for instance due to an electric field, its
energy varies in a displacement dx, such that dE = F dx. Using (4.7) we see that the
electron velocity is related to the force by,

F dx = � vgdk.

Using dx = vgdt this gives

F = �
dk

dt
. (4.8)

This result was somehow expected, because as the electron momentum is �k,
Eq. (4.8) is nothing more than Newton’s second law. However, it is also somewhat
surprising, sincewemight have expected that the potential of the crystal lattice would
have amore drastic effect on the electronmotion. Equation (4.8)means that the lattice
does not change the momentum variation, what changes is the dependence of the
energy on momentum, which corresponds to changing the electron mass. To show
this we use Eq. (4.7) to express the electron acceleration as a function of E and k

a = ∂vg
∂t

= �
−1 ∂2E

∂k∂t
= �

−1 ∂2E

∂k2
dk

dt
. (4.9)

Substituting in this equation the expression for dk/dt from (4.8) we obtain

F = �
2

∂2E/∂k2
a. (4.10)

Recalling that F = ma, we see that under the action of an external force, the
electron in the crystal behaves similarly to a free electron, but with an effective mass
given by

m∗ = �
2

∂2E/∂k2
. (4.11)

This result also applies to a free electron. In this case, using the dispersion relation
(3.30) we obtain m* = m, that is, the effective mass is the electron mass itself.

Equation (4.11) was obtained assuming that the energy only depends on the
modulus of the wave vector. Actually, as shown in Fig. 4.5, the energy also depends
on the direction of �k. This means that the effective mass depends on the direction
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of �k. In the most general definition, the effective mass is not a scalar, it is a tensor
quantity represented by a matrix, whose element αβ is given by

m∗
αβ = �

2

∂2E/∂kα∂kβ

. (4.12)

This definition applies to electrons in metals and in semiconductors.

4.4 Electron Behavior at T > 0: The Fermi-Dirac
Distribution

As we have seen, at T = 0 K electrons in a crystal occupy the states with the lowest
lying allowed energy levels so as to fill, one by one, all states up to a certain energy
EF , the Fermi energy, or Fermi level. At temperatures above 0 K electrons with
energy close to the Fermi level are thermally excited to states above EF . The thermal
equilibrium distribution is calculated in statistical mechanics and takes into account
that the electrons are particles indistinguishable from each other and that they obey
the Pauli exclusion principle. Here we will simply state the known result and will use
it to calculate quantities of interest. The probability of finding the states with energy
in the range from E to E + dE, occupied with electrons, at a temperature T, is given
by f (E) dE, where

f (E) = 1

1 + e(E−EF )/kBT
(4.13)

is the Fermi–Dirac distribution function. In this expression EF is the Fermi level
and kB is the Boltzmann constant (kB = 1.38 × 10−23 J/ K). The shape of f (E)
is shown in Fig. 4.9 for various temperatures. Note that at T = 0 the function is
discontinuous at E = EF , that is f (E < EF) = 1 and f (E > EF) = 0. This means that

Fig. 4.9 Fermi–Dirac
distribution function at
various temperatures
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the states with E < EF are occupied by electrons while those with energies E > EF

are empty. At temperatures above 0 K the Fermi–Dirac distribution changes mainly
in the vicinity of EF . Due to thermal excitation, the probability f (E) of states with
E > EF to be occupied is nonzero. The value of f (E) decreases exponentially with
the distance E − EF and increases exponentially with temperature. The probability
f (E) of occupation of states with E > EF is the same as the probability 1 − f (E)
of the states with E < EF to be empty. This is so because the Fermi–Dirac function
f (E) is symmetrical about EF , where its value is f (EF) = ½. In each material the
value of EF depends on the shape of the bands and the number of electrons.

The Fermi–Dirac distribution f (E) represents the probability of occupation of a
state with energy E. To calculate the number of electrons in a given energy range, it
is also necessary to know the number of states in that range. This number is given
by the density of states D (E), which can be calculated from the relation E (k). Let
us consider the simple model for a metal like the one in Sect. 4.1, in which free
electrons are confined by an infinite potential well. In this case, the electron energy
is characterized by a parabolic function given by Eq. (4.2)

E = �
2k2

2m
.

Actually, this result was demonstrated for a one-dimensional potential well.
However, it also applies to a potential well in three dimensions with infinite walls. In
this case, the wave number k is replaced by a wave vector �k with three components
kx, ky, kz, so that the energy becomes

E = �
2

2m
(k2x + k2y + k2z ). (4.14)

Analogously to the problem in one dimension, the three components of the wave
vector can only assume discrete values, that are determined by the boundary condi-
tions on the crystal surfaces. Assuming that the crystal is a cube with sides of length
L, the values are

kx = nx
2π

L
, ky = ny

2π

L
, kz = nz

2π

L
, (4.15)

where nx, ny, and nz are positive or negative integers. This result is a generalization
of Eq. (3.43) for three dimensions and for travelling waves. Due to the spin of the
electron, for each set of quantum numbers (nx,ny,nz), and therefore in each volume
(2π /L)3 in space, there are two electronic states. The density of states D(E) is a
quantity that expresses the number of states with energy E. By definition, VD(E)dE
is the number of states with energy between E and E + dE, where V is the volume
of the crystal. In wave vector space the surfaces of constant energy are spheres of
radius k. Therefore, the number of states with energy in the range (E, E + dE) is the
volume between the spheres of radii kE and kE+dE , multiplied by number of states
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Fig. 4.10 Density of
electronic states D(E) for a
parabolic energy band

per unit volume in k-space. Since this is given by 2(2π /L)3, we have

V D(E) dE = 2(L/2π)3 4πk2E dk, (4.16)

where kE is themodulus of thewave vector corresponding to energyE. FromEq. (4.2)
we have

k2E dk = 1

2

(
2m

�2

)3/2

E1/2 dE,

which, substituted in (4.16), gives for the density of states

D(E) = 1

2π2

(
2m

�2

)3/2

E1/2. (4.17)

Figure 4.10 shows a plot of the density of states for electrons with a parabolic
energy band. Note that the energy is placed on the vertical axis in order to facilitate
the visualization of the electron filling of the lower energy states. At T = 0, all states
with energy below the Fermi level EF are filled. If there are N electrons in the band,
per unit volume, the condition that determines EF is

EF∫

0

D(E) dE = N . (4.18)

Using Eq. (4.17), this relation gives.

1

3π2

(
2m

�2

)3/2

E3/2
F = N . (4.19)
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Fig. 4.11 a Fermi surface for a system of free electrons. b Fermi surface (FS) and the first Brillouin
zone of fcc coper

From (4.19) we obtain an expression for the Fermi level of a system with N
electrons with a parabolic energy band, at T = 0,

EF = (3π2N )2/3
�
2

2m
. (4.20)

At T = 0 all states with energy E ≤ EF are occupied. These states are
characterized by wave vectors with modulus k ≤ kF , where kF , given by

k2F = 2m EF

�2
, (4.21)

is called the Fermi wave vector, or Fermi radius. The surface in �k-space for which
all states inside are occupied T = 0, is called Fermi surface. In an electron system
with a parabolic energy band, this surface is a sphere of radius kF given by (4.21),
as illustrated in Fig. 4.11a. The parabolic band (4.14) is valid only for free electrons.
In crystals, the variation of energy with �k is more complicated, as illustrated by the
copper bands in Fig. 4.5. In this case, the Fermi surface is not a sphere, it has a more
complex shape. Figure 4.11b shows the Fermi surface of copper, that is contained in
the first Brillouin zone.

Example 4.1 Sodium crystallizes with the bcc structure, with two atoms per
unit cell, each with one electron 3s. Considering that the lattice parameter of
sodium at T = 0 is 4.225 Å, calculate: (a) The Fermi energy; (b) The velocity
of electrons with energy at the Fermi level, called Fermi velocity vF .

(a) Toobtain theFermi energywithEq. (4.20), it is necessaryfirst to calculate
the number of free electrons per unit volume.Since there are twoelectrons
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per unit cell with lattice parameter a, we have

N = 2

a3
= 2

4.2253 × 10−30
= 2.65 × 1028 m−3

The Fermi energy is related with N by Eq. (4.20)

EF = (3π2N )2/3
(

�
2

2m

)
.

In a first approximation we can consider the mass of the free electrons
in sodium as the electron mass in vacuum, m = 9.1 × 10−31 kg. Thus.
EF = (3 × 3.142 × 2.65 × 1028)2/3 1.052×10−68

2×9.1×10−31 = 5.15 × 10−19 J or

EF = 5.15 × 10−19

1.6 × 10−19
= 3.22 eV

(b) Since the energy of the free electrons is a kinetic energy, the velocity can
be calculated using the relation

EF = 1

2
m v2F .

Thus

vF =
(
2EF

m

)1/2

=
(
2 × 5.15 × 10−19

9.1 × 10−31

)1/2

vF = 1.06 × 106 m/s = 1.06 × 108 cm/s

At temperatures above zero, the probability of occupation of the electron states is
given by f (E) in Eq. (4.13), so that the number of electrons, per unit volume in the
energy range between E and E + dE is

dN = f (E) D(E) dE . (4.22)

Figure 4.12 illustrates the product of the functions f (E) and D(E) and shows the
area element corresponding to dN. Note that the electrons excited to states above the
Fermi level are thosemainly in states with energies below and close toEF . This result
is quite general. Whenever there is a disturbance in the electron system, states with
energy close to EF are the most affected. This disturbance may be due to thermal
excitation, or to excitation produced by external fields. In the next section, we shall
study the effect of an applied electric field.



100 4 Electrons in Crystals

Fig. 4.12 Electron population N(E) = f (E) D(E) for a parabolic energy band at T > 0. The area
dN represents the number of electrons in the energy range dE

Example 4.2 Calculate the total energy of free electrons in a sample of sodium
with volume 1 cm3, at T = 0.

The electron energy per unit volume is the sum of the free electron energies,
which can be calculated using (4.22).

U

V
=

∫
E dN =

∫
E f (E) D(E) dE .

At T = 0 K, the Fermi–Dirac distribution has a value 1 for E < EF and 0
for E > EF , therefore, with Eq. (4.17) we have

U

V
=

EF∫

0

E D(E) dE = 1

2π2

(
2m

�2

)3/2
EF∫

0

E3/2 dE = 1

2π2

(
2m

�2

)3/2 2

5
E5/2

F .

Using (4.20) we can express this result in the form

U

V
= 3

5
N EF .

Thus, using the results of Example 4.1, we obtain

U

V
= 3

5
× 2.65 × 1028 × 5.15 × 10−19 = 8.19 × 109 J/m3.

So, the energy of the electrons in a sample of sodium with volume 1 cm3 is

U = 8.19 × 109 × 10−6 = 8.19 × 103 J.
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4.5 The Mechanism of Electric Current in Metals

The electric current in a metal results from transport of electric charges by electrons.
To understand the mechanism of the electric current we will have to use classical
results combined with quantum concepts. When an external electric field is applied
to the metal, the free electrons suffer the effect of this field superimposed on that of
the crystalline potential. The effect of the latter is basically expressed by the electron
effective mass m*. The external field E exerts a force �F = −e �E on the electron, so
that its acceleration given by (4.10) and (4.11) is

a = dv

dt
= − e

m∗ E . (4.23)

This result means that in a perfect crystal, a constant electric field E produces
a constant acceleration on the electron and hence a velocity that increases linearly
in time, v = a t. Equation (4.23) also implies that, even without an external field,
electrons can have a constant nonzero velocity. This results from the fact that the
steady state of the electron in a crystal without an external field is a plane wave,
given by Eq. (4.5). This wave has a momentum �k, that corresponds to a constant
velocity. It turns out that the electron can only be in a plane wave steady state if
the crystal is perfect, and at T = 0 K. At nonzero temperatures the crystal is not
perfect because of the thermal lattice vibrations. Also, the crystal may have defects
or impurities. To understand the electron behavior in a crystal we make a simple
analogy with the motion of a skater along a row of regularly spaced obstacles, as
illustrated in Fig. 4.13a. If the skater is well trained, he can perform this “zig-zag”
motion without hitting the obstacles, and with constant average speed along the row.
This motion is analogous to that of the electron in the perfect crystal, described by
a plane wave with amplitude modulated by the periodic potential of the lattice, as in
Eq. (4.5). However, if an obstacle is displaced from its normal position, or if there
is an extra obstacle in the row, the skater will likely collide with it, as illustrated in
Fig. 4.13b. What happens to an electron in the solid is somewhat analogous. If the
regularity of the crystal lattice is disturbed, the electron remains in a steady state only
for a certain period of time. The disturbance causes electron collisions, or scattering,
resulting in a transition to another state. The two main sources of disturbances in
the regularity of the lattice are the atomic vibrations due to thermal agitation, crystal
defects, or the presence of atoms or ions of impurities. The collisionwith the lattice in

Fig. 4.13 a Illustration of a zig-zag motion of a skater along a row of regularly spaced obstacles.
b Collision with an obstacle displaced from its regular position
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Fig. 4.14 Illustration of the electron motion in a solid. a Without an external electric field, the
average velocity is zero. b In the presence of an electric field, in addition to the fast and random
motion, there is a continuous displacement in the direction opposite to the field resulting in an
electric current

thermal motion corresponds to the scattering of electrons by phonons. This process
is similar to the collision between particles, in which there is conservation of energy
andmomentum. Due to the scattering processes, in the absence of an external electric
field the average electron velocity is zero, as illustrated in Fig. 4.14a.

When an electric field is applied to the material, in addition to the fast and random
motion of the electrons caused by the collisions, there is a continuous displacement
in the direction opposite to the electric field. This displacement results in a transport
of electric charge, that is, an electric current, called drift current, or conduction
current.

In the quantum description of the behavior of electrons, it is necessary to consider
that at T = 0 and without an external field, all states in k-space inside the Fermi
surface are occupied. This is illustrated in Fig. 4.15a by a section in the plane (kx,

Fig. 4.15 a View of the Fermi surface in the kx , ky plane in the absence of an external electric field
at t = 0. The dots represent the occupied electron states. b Fermi surface at an instant δt after the
application of an electric field in the − x direction. The occupied states are displaced by δkx given
by Eq. (4.24), so that the total momentum in the x direction is positive
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ky) of the Fermi sphere, which applies to the case of free electrons. Since all states
with k < kF are filled, to each state +�k occupied, another state −�k is also occupied.
Thus,

∑ �k = 0 so that the electric current is zero. However, if an electric field E is
applied in the direction −x at the instant t = 0, the states �k of the electrons change
according to Eq. (4.8). Since the force on the electrons is Fx = (−e)(−E) = eE, the
variation of �k in the time interval δt is

δkx = eE

�
δt. (4.24)

As a consequence of Eq. (4.24), each electron in state �k goes to another state
�k+ x̂δkx after an interval δt, resulting in the occupation of states shown in Fig. 4.15b.
The net result is a total momentum per unit of volume given by N δkx, where N is
electron concentration in the band. This results in an electric current in the direction
+ x. Note that although all electrons have their states changed by the action of
the electric field, only the states close to the Fermi surface contribute to make the
vectorial sum of the velocities different than zero. Due to collisions, the displacement
of the Fermi sphere stops after an average time interval τ , called collision time. The
resulting average velocity can be obtained fromEq. (4.23), or directly fromEq. (4.24)
using the relation �v = ��k/m∗. This average velocity, called drift velocity, is then

vx = eE τ

m∗ . (4.25)

Considering that there are N free electrons per unit of volume, we obtain for the
electric current density

Jx = (−e)N vx = −N e2τ E/m∗. (4.26)

This equation has the form of Ohm’s law that relates the applied voltage V, the
electric current intensity I, and the resistance R

I = V/R. (4.27)

Considering that the resistance of a conductor of length L and cross section area
A is

R = 1

σ

L

A
, (4.28)

where σ = 1/ρ is the conductivity and ρ is the resistivity, we can use Eq. (4.28) in
(4.27), together with the relations J = I / A and V = E L, to write Ohm’s law in the
form

J = σ E . (4.29)
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Fig. 4.16 Measured
variation of the resistivity of
two samples of potassium at
low temperatures. The upper
curve corresponds to a
sample with larger amount of
impurities than the one of the
lower curve. Reprinted with
kind permission from D. K.
MacDonald and K.
Mendelssohn, Proc. Roy.
Soc. (London) A202, 103
(1950)

Substituting (4.29) in (4.26) we obtain the conductivity of a metal in terms of
material parameters

σ = N e2 τ

m∗ . (4.30)

In a conductor with a perfect crystal lattice at T = 0, the collision time is infinite
and therefore the conductivity is also infinite. In a real crystal, the collision time
is limited because of the scattering of electrons by phonons and by the impurities
and imperfections of the lattice. As thermal agitation increases with temperature, the
collision time due to scattering by phonons decreases with increasing temperature.
On the other hand, the contributions of impurities and imperfections do not vary
with temperature and exist even at T = 0. This is illustrated in Fig. 4.16 which shows
the measured variation of the resistivity ρ of potassium with the temperature. The
increase in ρ with temperature is due to scattering by phonons, while the contribution
at T = 0 comes from impurities and imperfections. The upper curve corresponds to
a sample of a potassium with a larger amount of impurities than the lower one and,
therefore, has a larger value of ρ.

Figure 4.17 shows the conductivity at room temperature for a variety of materials.
It varies from 10−18 �−1 m−1 in quartz, which is a very good insulator, to about 108

�−1 m−1 in copper, which is a good conductor. This range of variation of 1026 is

Fig. 4.17 Conductivity in �−1 m−1 for a variety of materials at room temperature
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the largest known for the same physical quantity. In fact, the range of variation of
σ is even larger since superconducting materials have conductivity several orders of
magnitude larger than copper.

To close this chapter, let us give numerical estimates for some important quantities
involved in the mechanism of electric current. Consider the case of copper, which at
room temperature has conductivity of σ ~ 108 �−1 m−1. Since the number of free
electrons is N ~ 1023 cm−3, using Eq. (4.30) and the values for the mass and charge
of the electron (Appendix B), we obtain for the collision time τ ~ 10−13 s at room
temperature. The average distance that the electron travels between two collisions is
called mean free path, denoted by l. Since the electrons involved in the current are
in states close to the Fermi surface, the mean free path is

l = vF τ, (4.31)

where vF is the Fermi velocity, related to the radius of the Fermi sphere by the
relation vF = �kF/m∗. Using this expression and Eqs. (4.20) and (4.21), we obtain
for copper vF ~ 106 m/s. With Eq. (4.31) we obtain the mean free path for copper at
room temperature l ~ 10−7 m = 103 Å, which corresponds to the length of hundreds
of Cu unit cells in the crystal. It is quite surprising that in copper, at room temperature,
an electron travels through hundreds of unit cells without colliding with the atoms.

From Eq. (4.25) we can also estimate the electron drift velocity. Considering that
a voltage of 1 V is applied to the ends of a 1 m long copper wire, the electric field
in the wire is E = 1 V/m. Using τ ~ 10−13 s we obtain with Eq. (4.25) vx ~ 10−2

m/s. This shows that the drift velocity is several orders of magnitude smaller than
the velocity of the electrons between two collisions. In other words, the drift motion
is much slower than the random motion of the electrons between two collisions.

Example 4.3 Considering that at room temperature free electrons in silver
have collision time of τ = 3.8 × 10−14 s, and concentration N = 5.86 × 1022

cm−3, calculate: (a) The resistance of a silver wire with cross-section area 0.1
mm2 and length 100 m; (b) The electric current in the wire when a voltage of
1.6 V is applied to its ends; (c) The drift velocity of electrons in the conditions
of item (b).

(a) For the calculation of the resistance it is necessary first to obtain the
conductivity. With Eq. (4.30) we have

σ = N e2 τ

m∗ = 5.86 × 1022 × 106 × 1.62 × 10−38 × 3.8 × 10−14

9.1 × 10−31

= 6.26 × 107 �−1 m−1.

The wire resistance is then
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R = 1

σ

L

A
= 100

6.26 × 107 × 1 × 10−7
= 16 �.

(b) The electric current is

I = V

R
= 1.6

16
= 0.1A.

(c) The drift velocity, related to the current density by Eq. (4.26) is

vx = J

N e
= I

N e A
= 0.1

5.86 × 1028 × 1.6 × 10−19 × 10−7
= 1.7 × 10−4 m/s.

Problems

4.1 Silver crystallizes in the fcc structure, with lattice parameter 4.086 Å, and four
atoms per unit cell, each with a 5s electron. Calculate the concentration of free
electrons in silver in cm−3.

4.2 In a first approximation the electrons in silver have a 5s parabolic energy band.
Calculate the Fermi level, EF , in eV, assuming that the free electron mass is
equal to the mass of electrons in a vacuum.

4.3 Using the results of Problems 4.1 and 4.2 to calculate for silver.

(a) The Fermi velocity of the electrons.
(b) The wavelength of a free electron moving with the Fermi velocity and

compare it with the distance between the atoms (~ 4 Å).
(c) At what temperature the probability of finding electrons with energy E

= EF + 0.1 eV is 10%?

4.4 A certain metal has a Fermi level EF = 1 eV. Plot, preferably on a computer,
the Fermi–Dirac distribution function for T = 10 K and 300 K.

4.5 Show that the probability that an electronic state with energy E = EF + �E is
occupied is equal to the probability that the state with energy E = EF − �E
is empty.

4.6 In a copper wire of cross-section area 1 mm2 there is a current of 10 A.
Considering that the concentration of free electrons is N = 8.5 × 1022 cm−3,
calculate:

(a) The Fermi level EF , using the same approximations of Problem 4.2;
(b) The Fermi velocity;
(c) The electron drift velocity, and compare it with the Fermi velocity.



4.5 The Mechanism of Electric Current in Metals 107

4.7 Consider the resistivity of copper at room temperature 1.7× 10−8 �m and use
the data and results from the previous problem to calculate:

(a) The average electron collision time;
(b) The mean free-path of electrons.

Further Reading
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D.J. Roulston, An Introduction to the Physics of Semiconductor Devices (Oxford University Press,
Oxford, 1999)

L. Solymar, D. Walsh, Lectures on the Electrical Properties of Materials (Oxford University Press,
Oxford, 2009)

F.F.Y. Wang, Introduction to Solid State Electronics (North-Holland, Amsterdam, 1989)



Chapter 5
Semiconductor Materials

In this chapter we present several basic concepts and properties of semiconductors
that are essential for understanding the operation of devices. We begin with the intro-
duction of the concept of holes, that together with electrons are the charge carriers
in electric conduction processes. Then we show the key role played by crystal impu-
rities used in the preparation of two types of extrinsic semiconductors, p and n, that
make possible the fabrication of devices. One section is devoted to the calculation
of the concentrations of electrons and holes in both types of semiconductors, that
strongly depend on the position of the Fermi level relative to the valence and conduc-
tion energy bands. Finally, we study the various mechanisms by which electrons and
holes carry electric current in semiconductors.

5.1 Semiconductors

As studied in the previous chapter, semiconductors are characterized by a full valence
band and an empty conduction band at T = 0, separated by a relatively small energy
gap, Eg, on the order of 1 eV or less. Due to the small gap, at room temperature
the number of electrons in the conduction band is appreciable, althoughmuch smaller
than the number of free electrons in metals. This results in conductivities with values
intermediate between those of insulators and ofmetals, as illustrated in Fig. 4.17. This
is the reason for the name semiconductor. The concentration of electrons in the
conduction band of a pure semiconductor varies exponentially with temperature,
which makes its conductivity strongly dependent on temperature. This is one of the
reasonswhy pure semiconductors, also called intrinsic, are notmuch used in devices.

The conductivity of semiconductors can also be drastically changed with the pres-
ence of impurities, that is, atoms of elements different from those in the pure semi-
conductor crystal. It is this property that makes it possible to manufacture a variety
of electronic devices from the same semiconductor material. The process of placing
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impurities fromknownelements in a semiconductor is calleddoping. Semiconductors
with impurities are called doped or extrinsic.

The most important semiconductor for electronics is silicon. It has the same
crystalline structure as diamond, shown in Fig. 1.8b, formed only by atoms of the
element Si, that belongs to group IV of the periodic table. Figure 5.1 shows the
electronic energy band structure of silicon. Themaximum of the valence band occurs
at k = 0, the � point of the Brillouin zone. The top of the valence band is taken as
the reference for the energy scale, that isE = 0. Theminimumof the conduction band
occurs at a nonzerowave vector along the direction [100], close to point X on the egde
of the Brillouin zone, with energy 1.12 eV. This is the value of the energy gap of Si at
T = 300 K, Eg = 1.12 eV. Actually, the value of the gap varies with temperature. In
Si at T = 0, the gap is 1.16 eV and decreases with increasing temperature. Another
important semiconductor is germanium, also formed by an element of group IV, Ge,
which also has the crystalline structure of diamond. Ge has a band structure similar
to that of Si, but with a smaller gap, Eg = 0.66 eV at room temperature. This makes
its electrical properties more sensitive to changes in temperature than in Si.

In Ge and Si the valence and conduction bands result from electronic states s and
p that overlap. Since there are two s and six p states, there are eight hybrid bands s
+ p, which are separated into two sets of four bands each. The four lower energy
bands can accommodate 4 N electrons. Since Si and Ge have four valence electrons
per atom, the four s+ p bands with smaller energy are completely filled, constituting
the valence bands, shown in Fig. 5.1 for Si.

One of the most important semiconductors for application in opto-electronics is
gallium arsenide, GaAs. It is formed by the elements Ga and As, from groups III
and V respectively, and crystallizes in the zinc-blende structure of Fig. 1.8a. In
the formation of GaAs, the atom of As loses an electron for a neighbor Ga atom,
leaving both with four electrons in the 4s2 4p2 shells. Similar to Si and Ge, at T =
0, GaAs has a completely filled valence band and an empty conduction band. The

Fig. 5.1 Calculated
electronic energy band
structure of silicon.
Reprinted with permission
from J. R. Chelikowsky and
M. L. Cohen, Phys. Rev. B
14, 556 (1976). Copyright
(1976) by the American
Physical Society
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Fig. 5.2 Calculated
electronic energy band
structure of GaAs. Reprinted
with permission from
F. Herman and W. E. Spicer,
Phys. Rev. 174, 906 (1968).
Copyright (1976) by the
American Physical Society

band structure of gallium arsenide is shown in Fig. 5.2. Note that, in this case, the
minimum of the conduction band occurs at the same wave vector as the maximum
of the valence band, k = 0, with an energy gap Eg = 1.43 eV. There are several other
semiconductors formed by elements of groups III and V, called III-V compounds,
such as InSb (Eg = 0.18 eV), InP (1.35 eV), GaP (2.26 eV), and GaN (3.38 eV),
for example. There are also important semiconductor compounds with elements of
groups II and IV, such as CdS (2.42 eV), PbS (0.35 eV), PbTe (0.30 eV) and CdTe
(1.45 eV), among others.

The conduction properties of semiconductors are mainly determined by the
number of electrons in the conduction band. So, they depend heavily on the ratio
Eg/kBT, and therefore on the value of the energy gap, but they are not very much
influenced by the shape of the bands. On the other hand, the optical properties
strongly depend on the shape of the energy bands. As will be shown in Chap. 8, elec-
tronic transitions accompanied by the emission or absorption of photons in a crystal
must conserve energy and momentum, i. e.

Ef − Ei = ± �ω, (5.1)

�kf − �ki = ± �k, (5.2)

where Ef and Ei are the electron energies in the final and initial states, respec-
tively, �kf , �ki the corresponding wave vectors, while ω and �k are the frequency and
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Fig. 5.3 Illustration of the interband electronic transitions in semiconductors. a Direct gap: elec-
tronic transition with emission of photons only. b Indirect gap: transition with emission of photons
and phonons

wave vector of the photon absorbed (Ef > Ei) or emitted (Ef < Ei) in the tran-
sition. In the case of gallium arsenide, the transition from one electron at the
minimum of the conduction band to the maximum of the valence band is accom-
panied by the emission of a photon with energy �ω = Eg = 1.43 eV and wave
number k = 2π /λ = 7.2 × 104 cm−1. Since this value is much smaller than the
wave number at the Brillouin zone boundary (ZB), kZB ~ π /a ~ 108 cm−1, it is
negligible on the scale of Fig. 5.2. Thus, momentum is conserved in the photon
emission and the transition is allowed. This transition, illustrated in Fig. 5.3a, is
called a direct emission process. Correspondingly, the material is called direct gap
semiconductor.

In the case of silicon or germanium, it is not possible to have a transition between
the minimum of the conduction band and the top of the valence band, with emission
or absorption of photons only. The reason is that the photon with energy Eg has k
� kZB and this transition requires a variation of the wave vector of the order of kZB
to conserve momentum. As we saw in Chap. 2, phonons have energy �� � Eg and
wave vector in the range 0 ≤ k ≤ kZB. It is possible, then, to have a transition through
the gap, with the emission or absorption of a photon, as long as it is accompanied
by the emission or absorption of a phonon. This transition, illustrated in Fig. 5.3b, is
called an indirect process. For this reason, Si and Ge are called indirect gap semi-
conductors. Since the transition in indirect gap semiconductors involves phonons and
photons, the probability of emission or absorption of photons is much smaller than
in direct gap semiconductors. For this reason, lasers and light emitting diodes (LED)
are made with direct gap semiconductors. The most important ones are GaAs, InSb,
InAs, InP, PbS, CdS, CdTe, and GaN. Not all compounds in group III-V have a direct
gap. GaP and AlSb, for example, have indirect gap.
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5.2 Electrons and Holes in Intrinsic Semiconductors

5.2.1 Effective Mass of Electrons and Holes

In a semiconductor at a finite temperature, electrons in the top of the valence band
are thermally excited and can go to the conduction band. In this process they leave
empty states in the valence band. Thus, if an external electric field is applied to
the semiconductor, electrons in both partially filled bands contribute to the elec-
tric current. The electrons of the conduction band, under the action of the field �E,
are subject to a force �F = −e�E and move according to Newton’s law, with effective
mass given by Eq. (4.11). Since the electrons occupy states near the minimum of the
conduction band, they all have approximately the same effective mass

m∗
e = �

2

(∂2E/∂k2)k=kmc

, (5.3)

where kmc corresponds to the minimum of the conduction band. Since the curvature
of the conduction band is upward, the effective mass of the electrons is positive, so
that they accelerate in the opposite direction to the field.

The behavior of the electrons in the valence band is quite different. Notice first,
that the electrons near the top of the valence band have negative effective mass,
because of the curvature of the function E(k). To understand the electron behavior,
let us assume that there is only one empty state at the top of the band. Figure 5.4
illustrates the behavior of this state when an electric field Ex is applied to the crystal
in the direction + x. Before application of the field, the empty state must be at the
top, as in the energy diagram in Fig. 5.4a, so that the algebraic sum of themomenta of
all electrons is zero. After the field is applied, all electrons tend to move in space in
the − x direction, because by Eq. (4.8)

Fig. 5.4 Electron occupation of states at the top of the valence band. a Without external electric
field. b and c With an external electric field in the direction + x
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�
dkx
dt

= −e Ex. (5.4)

Thus, at some later instants, the empty state will be at the positions shown in
Fig. 5.4b, c in the E(k) diagram. The displacement of all electrons in the band in
the negative kx direction results in the displacement of the empty state in the same
direction in k-space. Since all other states are occupied, the existence of an empty
state (absence of electron) with momentum −�k1 implies that the total momentum
of the system is +�k1. Therefore, the system behaves as if it were formed by a hole
with wave vector

�kh = −�ke. (5.5)

In this case, the force equation can then be written as

�Fe = �
d �ke
dt

= −�
d �kh
dt

. (5.6)

Since the force on the electron due to an electric field is �Fe = −e�E, Eq. (5.6)
gives

+e�E = �
d �kh
dt

.

This shows that the hole behaves as a particle with positive electric charge. A
development analogous to that of Eqs. (4.9)–(4.11) shows that the effective mass of
the hole is

m∗
h = − �

2

(∂2E/∂k2)k=kmv

, (5.7)

where kmv corresponds to the maximum of the valence band. Since the curvature
of the valence band is downward, the denominator is negative, ∂2E/∂k2 < 0, so
that the hole has a positive effective mass. This is consistent with the fact that if
an electric field is applied in the + x direction, the holes have momentum kx > 0 and
therefore move in the + x direction in real space.

Equations (5.6) and (5.7) lead to the conclusion that the empty states at the top
of the valence band, behave as states of elementary excitations of positive charge,
with modulus equal to that of the electron charge, and positive effective mass given
by Eq. (5.7). They are the states of holes. Since the values of the curvatures of the
valence and conduction bands are not the same, the effective masses of electrons
and holes are different. In addition, it is possible to have crystals with more than one
conduction or valence band, and also curvatures that vary with the direction of the
wave vector, so there are several masses of electrons and holes. In Figs. 5.1 and 5.2
we see that both Si and GaAs have two valence bands degenerate at k = 0. The
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Table 5.1 Energy gaps and
effective masses
of important semiconductors at
300 K

Crystal Eg (eV) m∗
e/m0 m∗

h/m0

Ge 0.66 m∗
c = 0.55 m∗

v = 0.31

m∗
e = 0.12 m∗

h = 0.23

Si 1.12 m∗
c = 1.10 m∗

v = 0.56

m∗
e = 0.26 m∗

h = 0.38

GaAs 1.43 0.068 0.5

GaN 3.38 0.13 0.74

InSb 0.18 0.013 0.6

InP 1.29 0.07 0.4

m0 is the electron rest mass
In Si and Ge, m∗

c and m
∗
v are the effective masses used to calculate

the densities of state in the conduction and valence bands,
respectively, while m∗

e and m∗
h are the masses used to calculate

the motion of electrons and holes

holes in the band of larger curvature (larger modulus of ∂2E/∂k2) have smaller
effective mass, are therefore called light holes, while the ones in the band of smaller
curvature are called heavy holes. Because of the plurality of effective masses, and
also the differences in the experimental measurements, the values of the electron and
hole effective masses found in the literature vary from one source to another, even
in the cases of the most studied semiconductors, such as Si, Ge and GaAs.

Table 5.1 shows the effective masses of some important semiconductors for appli-
cations in electronics, as well as the values ofEg at T = 300K.Note that in the case of
silicon and germanium there are two effectivemasses of electrons and two of holes. In
this case,m∗

c andm
∗
v are geometric averages of the effective masses used to calculate

the densities of state in the conduction and valence bands, respectively, while m∗
e

and m∗
h are the average masses used to calculate the motion of electrons and holes.

We note that electrons and holes in semiconductors are not simple particles like
the free electron: they incorporate the effect of the crystal potential, as their masses
are related to the curvature of the bands. Although the absolute charge of holes
is the same as the electron charge, its sign is positive. This led to the concept of
quasi-particles to define “particles-like” electrons and holes in semiconductors.

5.2.2 Creation and Recombination of Electron-Hole Pairs

In a pure semiconductor crystal at T = 0 and without any external disturbance, there
are no electrons in the conduction band or holes in the valence band. In other words,
there are no electric charge carriers and the material is an electric insulator. There are
several processes for exciting electrons from the valence to the conduction band. The
most common is thermal excitation, by which a number of electrons from the top of
the valence band go to the first levels of the conduction band when T > 0. The
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Fig. 5.5 Absorption of a photon with energy �ω and negligible wave number with the creation of
an electron–hole pair in a direct gap semiconductor

concentration of electrons and holes due to thermal excitation will be calculated in
the next section. The point to note here is that, in an intrinsic semiconductor, the
excitation of an electron to the conduction band always corresponds to the creation
of a hole in the valence band, that is, electrons and holes are created in pairs.

Electrons and holes are also created in pairs by other processes, such as optical
absorption. As illustrated in Fig. 5.5, when a photon with energy �ω is absorbed in
a semiconductor, an electron goes from the valence to the conduction band. Since the
photon wave vector is negligible, the electron created in the conduction band has the
samewave vector �ke of the electron removed from the valence band. This corresponds
to the creation of a hole with wave vector �kh = −�ke. In other words, the absorption of
the photon is accompanied by the creation of two quasi-particles: an electron and a
hole. As they have momenta ��ke and −��ke, the total momentum before and after the
photon absorption is zero, that is, momentum is conserved, as it should.

If n is the concentration of electrons per unit volume in the conduction band of
an intrinsic semiconductor, and p is the concentration of holes in the valence band,
we may state that n = p. In thermal equilibrium we then have

n = p = ni, (5.8)

where ni is the concentration of carriers in the intrinsic semiconductor, which will
be calculated in the next section. In any mechanism for the creation of electron–hole
pairs, the process is not static, it is dynamic. Electrons go to the conduction band,
leaving holes in the valence band, with a certain rate g that represents the number of
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pairs generated per unit volume and per unit time. Simultaneously, electrons recom-
bine with holes at a recombination rate r. This is clear in the case of thermal exci-
tation. In the optically induced process this is also true, because while the absorp-
tion of photons results in the creation of pairs, the recombination involves emis-
sion of photons. The fact is that, in the stationary regime, the number of pairs is
constant. This requires that, for each pair generation and recombination mechanism,
the creation and recombination rates are equal, that is

r = g. (5.9)

This result is called the principle of detailed balance.

Example 5.1 A laser beam with wavelength 515.5 nm, with area 1 mm2 and
power 10 mW, is incident on a semiconductor and is fully absorbed in a length
of 100μmdue to a process of generation of electron–hole pairs. Assuming that
the conversion efficiency of the process is 10%, calculate the rate of creation
of electron–hole pairs in cm−3 s−1.

Initially, it is necessary to calculate the number of photons per unit time in
the laser beam. Using Eq. (2.31) we can determine the energy of each photon:

E = hν = h
c

λ
= 6.63 × 10−34 3 × 108

515.5 × 10−9
= 3.86 × 10−19 J.

The number of photons per unit time is the ratio of the laser power by the
photon energy

P

hν
= 10 × 10−3

3.86 × 10−19
= 2.59 × 1016 s−1.

Since one electron–hole pair is created for 10 incident photons, the
generation rate per unit volume is (with length unit in cm)

r = 1

10

2.59 × 1016

10−2 × 100 × 10−4
= 2.59 × 1019 cm−3s−1.

5.2.3 Concentrations of Carriers in Thermal Equilibrium

Several properties of semiconductors, such as the conductivity, depend strongly on
the concentrations of the charge carriers, which are determined by the number of
states available to be occupied and the probability of occupation of each one. Here
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Fig. 5.6 Parabolic energy
bands in a semiconductor
used to calculate the density
of states

we shall calculate the concentrations in an intrinsic semiconductor at a temperature T
using concepts presented in Chap. 4. The probability for electrons to occupy a state
with energyE is given by the Fermi–Dirac function f (E) given by Eq. (4.13). In semi-
conductors there is an additional difficulty compared to metals because the Fermi
level is not known, a priori, as we will see below.

Let us consider a semiconductor with energy bands as in Fig. 5.6. The top of
the valence band has energy Ev and the minimum of the conduction band is Ec,
so that the energy gap is Eg = Ec − Ev. At T = 0, the valence band is full and
the conduction band is empty. Then, the Fermi level is located between the two
bands, Ev < EF < Ec, but its exact position in the gap depends on the shape of the
bands. Due to the symmetry of f (E) and the fact that, atT > 0, the number of electrons
in the conduction band is equal to the number of holes in the valence band, if the
bands are symmetrical, EF is located exactly in the middle of the gap. However, if
the bands are not symmetrical, EF is close but not exactly in the middle. In fact, the
determination of EF is made in the calculation of the concentrations of the carriers.

To calculate the concentration of carriers in the semiconductor, it is also necessary
to know the number of electronic states available for occupation in the energy bands,
which depends on the shape of the bands. Since the states involved in the conduction
process are close to the ends of the two bands, as in Fig. 5.6, we can use a parabolic
approximation for both. Assuming that the energy does not vary with the direction
of �k we can write for the conduction band and for the valence band.

E − Ec = �
2k2

2m∗
c

, (5.10)

Ev − E = �
2k2

2m∗
v

, (5.11)

where m∗
c and m

∗
v are, respectively, the effective masses in the conduction and in the

valence bands.
Except for the displacement of the reference, the above expressions are equal to

Eq. (4.14). Thus, the wave vectors of the states that can be occupied are discrete



5.2 Electrons and Holes in Intrinsic Semiconductors 119

and given by Eq. (4.15). Therefore, the density of electronic states in the conduction
band is given by (4.17), with E replaced by E − Ec, and m replaced by m∗

c . So

D(E) = 1

2π2

(
2m∗

c

�2

)3/2

(E − Ec)
1/2. (5.12)

Likewise, the density of hole states in the valence band is

D(E) = 1

2π2

(
2m∗

v

�2

)3/2

(Ev − E)1/2. (5.13)

From these results we can obtain the concentrations of electrons and holes
in thermal equilibrium in the semiconductor. The concentration (number per unit
volume) of electrons in the conduction band is obtained by the integral of the product
of the density of states D(E) with the occupation probability f (E),

n =
∞∫

Ec

D(E) f (E) dE. (5.14)

In this equation wemade the upper limit infinite because the contribution of states
with energy far above Ec is negligible, due to the fact that f (E) falls exponentially
with increasing E. To facilitate integration, we shall use an approximate expression
for the Fermi–Dirac function. At a temperature T = 290 K, the Boltzmann factor
is kBT = 0.025 eV. As EF is near the middle of the gap and Eg is of the order of 1 eV,
we can consider E − EF � kBT. Therefore, Eq. (4.13) can be approximated by

f (E) ≈ e−(E−EF )/kBT . (5.15)

Replacing Eqs. (5.12) and (5.15) in (5.14) we have

n = 1
2π2

(
2m∗

c
�2

)3/2 ∞∫
Ec

(E − Ec)
1/2e−(E−EF )/kBT dE

= 1
2π2

(
2m∗

c
�2

)3/2
e−(Ec−EF )/kBT

∞∫
0
x1/2e−x/a dx

,

where x = (E − Ec) and a= kBT. The definite integral can be calculated analytically,
and its value is a3/2 π1/2 /2. Thus, the concentration of electrons in the conduction
band can be written as

n = Nc e
−(Ec−EF )/kBT , (5.16)

where
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Nc = 2

(
m∗

c kBT

2π �2

)3/2

. (5.17)

The concentration Nc has two useful interpretations. Note that Eq. (5.16) would
be obtained from (5.14) immediately if the density of states were a Dirac delta
function at E = Ec, in the form

D(E) = Nc δ(E − Ec). (5.18)

This equation means that Nc plays the role of a concentration of states that, if
totally located at the energy Ec, would give the electron population in the conduction
band. Also, one can see the electron concentration n as given, approximately, by an
effective concentration of states with a constant value Nc between Ec and Ec + kBT,
and zero outside this range.

In a similar way, we can obtain the hole concentration in the valence band. Since
the number of holes is given by the absence of electrons in the valence band, we have

p =
Ev∫

−∞
[1 − f (E)]D(E) dE. (5.19)

Considering EF – E � kBT, we can use the approximation

1 − f (E) ≈ e(E−EF )/kBT .

With this approximation, the integral (5.19) can be calculated in a manner
analogous to that of n, leading to the following result for the concentration of holes

p = Nv e
−(EF−Ev)/kBT , (5.20)

where Nv is the effective concentration of states with energy at the top of the valence
band, given by

Nv = 2

(
m∗

v kBT

2π �2

)3/2

. (5.21)

The calculation of n and p is illustrated graphically in Fig. 5.7 for the case of
an intrinsic semiconductor with approximately symmetric bands. In this case, the
Fermi level is approximately in the middle of the gap. In fact, since the Fermi–Dirac
function can be approximated by the expression (5.15), Eqs. (5.16)–(5.21) are valid
for intrinsic or extrinsic semiconductors. The difference between the two cases is the
position of the Fermi level, which has not yet been calculated.
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Fig. 5.7 Graphic illustration of the calculation of the charge carrier concentrations in an intrinsic
semiconductorwith symmetric energy bands. a The solid lines represent the density of statesD(E) in
the two bands. bRepresentation of the Fermi–Dirac distribution f (E). c The colored areas represent
the concentrations of carriers in the two bands for T > 0

Example 5.2 Calculate the probability of occupation f (E) of a state
with energy E above the Fermi level, E = Ef + 0.2 eV, at a temperature
T = 290 K, using the approximate expression above and also with the exact
result (5.15).

Initially we need to calculate the thermal energy in eV,

kBT = 1.38 × 10−23 × 290

1.6 × 10−19
= 0.025 eV.

Thus

e(E−EF )/kBT = e0.2/0.025 = e8 = 2980.96.

The probability of occupation, given by the Fermi–Dirac distribution is

f (E) = 1

1 + e(E−EF )/kBT
= 1

1 + 2980.96
= 3.3535 × 10−4.

The value calculated with Eq. (5.15) is

f (E) = 1

2980.96
= 3.3546 × 10−4,

that is practically the same calculated with the exact expression.

In order to determine the Fermi level EF , it is necessary to use the condition of
conservation of the number of electrons. In the case of the intrinsic semiconductor,
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this imposes the condition that the number of electrons in the conduction band is equal
to the number of holes in the valence band, n = p = ni. Equating (5.16) and (5.20),
making EF = Ei (the Fermi level in the intrinsic semiconductor), and using Eqs.
(5.17) and (5.21), we obtain the Fermi energy in the intrinsic material (Problem 5.2),

Ei = 1

2
(Ec + Ev) + 3

4
kBT ln (m∗

v/m
∗
c). (5.22)

This equation clearly shows that only if T = 0, or if the effective masses of
electrons and holes are equal, the Fermi level in the intrinsic semiconductor is exactly
in themiddle of the gap. AtT > 0, in the general casewherem∗

v 	= m∗
c (non-symmetric

bands), the Fermi level is not exactly in themiddle of the gap and its position depends
on the temperature. However, since at room temperature Eg � kBT, this correction
is very small in Si, Ge and GaAs.

Once the Fermi energy Ei for the intrinsic semiconductor is known, we can imme-
diately calculate the concentrations of electrons in the conduction band and of holes
in the valence band. Using EF = Ei in Eqs. (5.16) and (5.20) we obtain.

ni = Nc e
−(Ec−Ei)/kBT , (5.23)

pi = Nv e
−(Ei−Ev)/kBT , (5.24)

where ni and pi denote the concentrations of electrons and holes in intrinsic
semiconductors. The product of these two quantities and the condition ni = pi give

ni = pi = √
nipi = (NcNv)

1/2 e−Eg/2kBT . (5.25)

This important result shows that the number of carriers in the intrinsic semi-
conductor varies exponentially with Eg/kBT. Figure 5.8 shows the variation with
temperature of ni for Ge, Si, and GaAs, calculated with Eq. (5.25), using Eqs. (5.17)
and (5.21) for the effective concentrations. The calculationwasmadewith the param-
eters in Table 5.1, assuming that Eg does not vary with temperature in the range of
the figure. The strong variation of ni with T is mainly due to the exponential factor
in Eq. (5.25), but it also contains a contribution from the term (NcNv)1/2 (Problem
5.3).

Table 5.2 presents the values of carrier concentrations and other important quan-
tities for Ge, Si, and GaAs. The mobility and the diffusion coefficient will be defined
in Sect. 5.5. Note that in all of them the intrinsic carrier concentration is in the range
107–1013 cm−3. These values are extremely small compared to the number of free
electrons inmetals, on the order of 1022 cm−3, and result from the fact thatEg � kBT.
Note that the values of Nc, Nv, and ni given in Table 5.2 were obtained through inde-
pendent measurements. For this reason, there is a small discrepancy between them
and the values calculated with Eq. (5.25) (Problem 5.3).



5.2 Electrons and Holes in Intrinsic Semiconductors 123

Fig. 5.8 Variation with
temperature of the intrinsic
carrier concentrations in Ge,
Si, and GaAs, calculated
with Eqs. (5.17), (5.21), and
(5.25), with the parameters
given in Table 5.1

Table 5.2 Values of important quantities in Ge, Si, and GaAs at T = 300 K, as given in Sze and
Lee, and in Streetman

Quantity Ge Si GaAs

Atoms or molecules (1022/cm3) 4.42 5.0 2.21

Lattice parameter a (Å) 5.658 5.431 5.654

Dielectric constant ε/ε0 16.0 11.8 10.9

Energy gap Eg (eV) 0.66 1.12 1.43

Intrinsic concentration ni (cm−3) 2.5 × 1013 1.5 × 1010 107

Effective concentration Nc (cm−3) 1.04 × 1019 2.8 × 1019 4.7 × 107

Effective concentration Nv (cm−3) 6.1 × 1018 1.02 × 1019 7.0 × 1018

Mobility μn (cm2/Vs) 3900 1350 8600

Mobility μp (cm2/Vs) 1900 480 400

Diffusion coefficient Dn (cm2/s) 100 35 220

Diffusion coefficient Dp (cm2/s) 50 12.5 10

Example 5.3 Obtain an expression for the concentration of electrons in the
conduction band for a hypothetical intrinsic semiconductor with m∗

v = m∗
c =

m0, and calculate its value for Eg = 1.0 eV and T = 300 K.
For m∗

v = m∗
c = m0, Eqs. (5.17) and (5.21) give, in SI units

Nc = Nv = 2

(
m0 kB
2π �2

)3/2

T 3/2 = 2

(
9.1 × 10−31 × 1.38 × 10−23

2 × 3.14 × 1.052 × 10−68

)3/2

T 3/2.
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That gives Nc = Nv = 4.83 × 1021 T 3/2 m−3K−3/2.

Using this result in Eq. (5.25), we have for the intrinsic carrier concentration
in cm−3

ni = 4.83 × 1015 T 3/2 e−Eg/2kBT cm−3K−3/2.

To obtain the numerical value for ni, it remains to calculate the value of the
exponential factor. For this we first find the value of the thermal energy in eV
at 300 K

kBT = 1.38 × 10−23 × 300

1.6 × 10−19
= 0.026 eV.

Thus, finally

ni = 4.83 × 1015 × 3003/2 e−1.0/0.052 = 1.12 × 1010 cm−3.

5.3 Extrinsic Semiconductors

Intrinsic semiconductors are rarely used in devices, among other reasons because
they have small conductivity and that is strongly dependent on temperature. In
general, semiconductors are usedwith a certain amount of atoms of elements different
from the ones in the intrinsic semiconductor, called impurities. Semiconductors with
impurities are called extrinsic, or doped. Aswe shall study in this section, by suitably
doping a semiconductor it is possible to control the number of electrons and holes,
and thus the value of the conductivity, with a small temperature dependence. Semi-
conductors with much larger concentration of electrons than of holes are called type
n (negative), while semiconductors with larger concentration of holes are called type
p (positive). The control of the properties of semiconductors by means of the doping
makes it possible to use these materials to manufacture a huge variety of electronic
devices.

The most common method for doping semiconductors is high temperature diffu-
sion. The atoms of the desired impurity come from a gas, as AsH in the case of As,
and diffuse into thematerial through its surface. This process is carried out in an oven
where the material and the gas that supplies the impurity are heated to a temperature
in the range of 400–700 °C. The depth of the surface layer that becomes doped and
the concentration of impurities depend on the temperature and exposure time.

In the diffusion process, the boundary between the doped layer and the pure
material is notwell defined.Due to the thermal nature of theprocess, the concentration
of impurities varies gradually at the border. Another method that allows to obtain
doped regions with better defined borders is ion implantation. In this process, a
beam of accelerated ions with energy in the range 10–100 keV bombards the surface
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of the material and penetrates into the interior. Impurity layers with well-defined and
controlled borders can be produced by this process with thicknesses up to 1 μm.

5.3.1 Impurity Energy Levels in a Crystal

The presence of defects or impurities in a crystal changes the electrostatic potential in
its vicinity, breaking the translation symmetry of the periodic potential. This distur-
bance can produce electronic wave functions that are localized in the vicinity of the
impurity, and are not propagating throughout the crystal. The energies of these wave
functions are obtained by solving the Schrödinger equation for the impurity poten-
tial. These energies appear in the form of discrete levels that can be located between
the bands of the perfect crystal. Figure 5.9 illustrates possible energy levels of impu-
rities between the bands of a doped crystal. In a first approximation, these energy
levels can be calculated with a simple model. Let us consider, for example, the case
of semiconductors such as germanium or silicon, which have a uniform covalent
bond.

The elements of group V of the periodic table, such as P, As or Sb, have inner elec-
tronic shells like the ones in Si orGe, but have five valence electrons instead of four. In
small quantities, atoms of these elements can easily enter into the crystal replacingGe
or Si atoms, becoming substitutional impurities, as illustrated in Fig. 5.10. Doping
can also be done with elements of group III, such as B, Al, Ga, and In, that have
three valence electrons.

In the case of group V impurities, such as As, four of its five valence electrons
are used in covalent bonding with neighboring atoms of Ge or Si. The fifth electron
is weakly bound to the atom, and can be thermally ionized at relatively low temper-
atures, typically above 50 K. With ionization, the fifth electron is free to move about
in the crystal, that is, it goes to the conduction band. This implies that the energy

Fig. 5.9 Perturbation in the energy diagram of a crystal due to defects and impurities. Some energy
levels are located in the gaps between the energy bands
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Fig. 5.10 Schematic model
of a crystal of Si or Ge doped
with substitutional
impurities, such as Ga
(acceptor) and As (donor).
The white circles represent
the atoms of Si or Ge.

level of the As impurity is close to the conduction band. Thus, impurities of As and
other elements of group V are donors, since they donate electrons to the conduc-
tion band, as illustrated in Fig. 5.11a. Semiconductors with donor impurities have a
higher concentration of electrons than holes and are therefore called type n.

In the case of impurities of group III, such as Ga, there is one electron less than
the four that are necessary for the full covalent bond with the neighbors. At temper-
atures of 50 to 100 K, electrons from the valence band of the crystal are “captured”
and become part of the covalent bonding, leaving holes in the valence band. Thus,
impurities of elements of group III are called acceptors and form semiconductors
of type p. As illustrated in Fig. 5.11b, they have an electronic energy level close to
the valence band. The energy levels of impurities in the gap can be calculated using
a simple model of the hydrogen atom. Let us consider initially the case of a donor
impurity in a Ge crystal. The calculation assumes that the almost free electron with
effective mass due to the periodic crystal potential moves around the positive impu-
rity ion. The energy of the impurity level is given by the equation for the ionization
energy of the hydrogen atom in the ground state, Eq. (3.66) with n = 1,

E = m∗
e e

4

2(4πε)2 �2
= m∗

e

m0

(ε0

ε

)2
EH , (5.26)

Fig. 5.11 Schematic illustration of the impurity energy levels in the gap of doped semiconductors.
Ec andEv denote, respectively, theminimumof the conduction band and themaximumof the valence
band. Note that this diagram represents the energies along a physical distance in the semiconductor



5.3 Extrinsic Semiconductors 127

Fig. 5.12 Ionization energies of some impurity elements in Ge and Si at T = 300 K. The numbers
indicate the distances in eV to the minimum of the conduction band for levels above the middle of
the gap, or to the maximum of the valence band for levels below the middle of the gap. Note that
Cu and Au have several impurity levels, both donors and acceptors [Sze and Lee]

where ε is the permittivity of the crystal, m∗
e is the electron effective mass, and EH is

the absolute value of the ground state energy of the hydrogen atom, 13.6 eV. In germa-
nium, the effective mass in the conduction band, given in Table 5.1, ism∗

e = 0.12m0,
so that the ionization energy of the donor impurity is

E1 = 13.6 × (0.12/162) = 0.006 eV.

Silicon has ε = 12ε0 and larger effective mass than Ge, so that the energy calcu-
lated with this model is larger, 0.025 eV. This energy represents the distance between
the impurity level and the minimum of the conduction band. Notice that this simple
model, which does not take into account the detailed nature of the impurity atom,
gives only approximate results. Figure 5.12 shows the energy levels of various impu-
rities in Ge and Si. The impurities commonly used to make type n semiconductors,
such as Sb, P and As, have levels close to the conduction band. On the other hand,
impurities of elements used in type p semiconductors, such as B, Al, Ga, and In, have
levels close to the valence band. In the case of Cu and Au, there are several impurity
levels in the gap of Si and Ge. Some levels are far from the bands and are called deep
levels. These levels are used to increase the rate of recombination of electron–hole
pairs. Typically, the concentrations used for doping semiconductors vary from 1014

cm−3 (1 part in 108, considering 1022 atoms per cm3), to 1020 cm−3 (1 part in 102,
which is very strong).

5.3.2 Carrier Concentrations in Extrinsic Semiconductors

Equations (5.14) and (5.19) for the carrier concentrations are, of course, not restricted
to intrinsic semiconductors. They also apply to extrinsic semiconductors, either with
donor or acceptor impurities. Therefore, the results (5.16) and (5.20) also apply to
extrinsic semiconductors, as long as the approximation (5.15) is valid. Denoting by n0
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and p0 the thermal equilibrium concentrations of electrons in the conduction band and
holes in the valence band, in a extrinsic semiconductor, we can then write

n0 = Nc e
−(Ec−EF )/kBT , (5.27)

p0 = Nv e
−(EF−Ev)/kBT . (5.28)

The calculation of n0 and p0 in a type n semiconductor is illustrated in
Fig. 5.13. The main difference between extrinsic and intrinsic semiconductors is
in the position of the Fermi level. For example, in type n semiconductors with donor
impurity energy Ed close to the conduction band, at T = 0 the states with energy Ed

are filled while those with energy E > Ec are empty. Thus, at T = 0, the Fermi level
EF is between Ed and Ec. At T > 0 the Fermi level can be below Ed , but will not
be far from this level. Since EF is close to Ec, at room temperature the exponential
in (5.27) is much larger than that in (5.28), so that the number of electrons is much
larger than of holes. Physically what happens is that n0 in a type n semiconductor
increases relative to ni because of the ionization of donor impurities. On the other
hand, the number of holes decreases because there are more electrons to recombine
with them. The product of the concentrations of electrons and holes, obtained from
(5.27) and (5.28) is

n0p0 = NcNv e
−Eg/kBT . (5.29)

Comparing this result with Eq. (5.25) we see that

n0p0 = n2i . (5.30)

In this way, the product n0p0 is constant and independent of the type and concen-
tration of impurities. This result, known as the law of mass action, is very important
and will be used frequently later. Using Eqs. (5.23) and (5.24) we can rewrite (5.27)
and (5.28) in a convenient way

Fig. 5.13 Graphic illustration of the calculation of the charge carrier concentrations in a type
n semiconductor
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n0 = ni e
(EF−Ei)/kBT , (5.31)

p0 = ni e
(Ei−EF )/kBT . (5.32)

These expressions show clearly that n0 = p0 = ni when EF = Ei, and that the
concentrations vary exponentially when EF departs from Ei.

In type n semiconductors the Fermi levelEF is close to the conduction band, so that
(EF − Ei) / kBT � 1. In this case, n0 � ni and p0 � ni, and for this reason electrons
are called majority carriers, while holes areminority carriers. On the other hand,
in type p semiconductors, EF is close to the valence band, so that (Ei − EF)/kBT
� 1, and p0 � ni and n0 � ni. In this case, holes are the majority carriers while
electrons are minority carriers.

Another important relation between carrier concentrations results from charge
neutrality. Denoting byN+

d the concentration of ionized donor impurities (impurities
that give electrons to the conduction band and are positively charged), and N−

a the
concentration of ionized acceptor impurities (that receive electrons from the valence
band and are negative), the condition for the material to be electrically neutral is

n0 + N−
a = p0 + N+

d . (5.33)

This is the equation of charge neutrality. For a given semiconductor with
known concentrations of impurities, one can calculate the Fermi level and the
concentrations of electrons and holes with the set of Eqs. (5.27)–(5.33).

Let us consider the case of a type n semiconductor with Nd donor impurities
per unit volume, at a temperature such that almost all of them are ionized, that
is N+

d ≈ Nd . In this case Eq. (5.33) gives

n0 ≈ p0 + Nd . (5.34)

Using the law of mass action (5.30) in this equation, we obtain

n0 = Nd

2
+

[(
Nd

2

)2

+ n2i

]1/2

, (5.35)

p0 = −Nd

2
+

[(
Nd

2

)2

+ n2i

]1/2

, (5.36)

Typically, in a doped semiconductor, the concentration of impurities is much
larger than the intrinsic concentration, Nd � ni. In this case, neglecting ni in (5.35)
we obtain

n0 ≈ Nd , (5.37)

as was expected. On the other hand, we cannot neglect ni in (5.36) completely, since
this would lead to p0 = 0. Using the binomial approximation for the square root in
Eq. (5.36) we obtain
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p0 ≈ n2i
Nd

. (5.38)

which is consistentwith Eqs. (5.30) and (5.37).With the expressions (5.37) and (5.38)
for the carrier concentrations, the Fermi level can be determined with Eq. (5.27) or
Eq. (5.31). For example, substituting (5.37) in (5.27) we have

EF = Ec − kBT ln
Nc

Nd
. (5.39)

Or else, substituting (5.37) in (5.31), we obtain another useful expression for EF

EF = Ei + kBT ln
Nd

ni
. (5.40)

It is important to note that these expressions for EF are valid only for type n
semiconductors, in the condition Nd � ni.

Example 5.4 Calculate the concentrations of electrons and holes and the posi-
tion of the Fermi level in a silicon crystal doped with Nd = 1016 cm−3 atoms
of arsenic, at T = 290 K.

From Table 5.2 we have ni = 1.5× 1010 cm−3. Using Eqs. (5.37) and (5.38)
we have

n0 ≈ N+
d ≈ Nd = 1016 cm−3,

p0 ≈ n2i
Nd

≈ 2.25 × 104 cm−3.

Using kBT = 0.025 eV and Nc = 2.8 × 1019 cm−3 in (5.39), it follows that

Ec − EF = 0.025 × ln(2.8 × 103) = 0.20 eV.

Comparing this result with the energy given in Fig. 5.12, it can be seen
that in this case the Fermi level is close and slightly below the level of the As
impurity in silicon. On the other hand, with (5.40) we obtain

EF = Ei + 0.34 eV.

The energy diagram corresponding to the semiconductor of Example 5.4 is
shown in Fig. 5.14a. This diagram is typical of type n semiconductors, in which
the Fermi level is close to the conduction band. It is important to note that when
the concentration of impurities is large, that is, comparable to Nc (2.8 × 1019 cm−3

in Si), the Fermi level approaches Ec. In this case, the result (5.39) is not valid
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Fig. 5.14 Energy diagrams for doped silicon: a type n, with Nd = 1016 cm−3 donor impurities;
b type p, with Na = 1017 cm−3 acceptor impurities

because Eq. (5.15) is not a good approximation for f (E). A semiconductor with Nd

comparable to Nc is called degenerate, and it has EF ≈ Ec.
It is easy to see, by analogy with the development of Eqs. (5.34)–(5.40), that in

type p semiconductors, doped with acceptor impurities with concentration Na, the
expressions for the concentrations of electrons and holes, and for the Fermi level are
(Problem 5.6)

n0 ≈ n2i
Na

, (5.41)

p0 ≈ Na, (5.42)

EF = Ev + kBT ln
Nv

Na
, (5.43)

EF = Ei − kBT ln
Na

ni
. (5.44)

Example 5.5 Calculate the concentrations of electrons and holes and the posi-
tion of the Fermi level in a silicon crystal doped with Na = 1017 cm−3 atoms
of gallium, at T = 290 K.

From Table 5.2 we have ni = 1.5× 1010 cm−3. Using Eqs. (5.41) and (5.42)
we have

p0 ≈ Na = 1017 cm−3,

n0 ≈ n2i
Na

≈ 2.25 × 103 cm−3.

Using kBT = 0.025 eV and Nv = 1.02 × 1019 cm−3 in (5.43), we have

EF = Ev + 0.025 × ln(1.02 × 102) = Ev + 0.11 eV.
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Fig. 5.15 Concentration of
electrons as a function of
temperature in type n silicon,
with Nd = 1016 cm−3 [Yang]

The energy diagram corresponding to Example 5.5, illustrated in Fig. 5.14b, is
typical of a type p semiconductor, in which the Fermi level is close to and above the
impurity level, that is close to the top of the valence band.

To conclude this section, we remark that the calculations presented here consider
that N+

d ≈ Nd and N−
a ≈ Na, that are valid only above a certain temperature,

which in the case of silicon is about 100 K. Below this temperature the impurities
are not all ionized and the numbers of carriers vary with temperature (see Problem
5.8). However, since in the range of 100 K to 500 K the impurities are practically all
ionized, the concentrations are almost independent of the temperature, as illustrated
in Fig. 5.15. Above 500 K the intrinsic concentration, which grows exponentially
with T, becomes important and eventually dominates the extrinsic one.

5.4 Dynamics of Electron and Holes in Semiconductors

The operation of semiconductor devices is based on the dynamics of the elec-
tric charge carriers, electrons and holes. The main dynamic processes are the
creation of electron–hole pairs, the recombination of pairs, and the collective motion
of these carriers. The collective motion of charges results in an electric current,
which is the main mechanism for the transmission of information in devices. There
are two basic types of collective motion that we shall study in the section: the drift
motion in an electric field and the diffusion of charges due to a spatial gradient in
the concentrations of the carriers.
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5.4.1 Conduction Current

The conduction current, or drift current, results from the slow average displace-
ment of charge carriers produced by an external electric field, simultaneous with the
rapid and random motion characteristic of particles in thermal agitation. While in a
metal this current is produced by the motion of electrons only, in semiconductors it
is formed by both electrons and holes.

When an electric field is applied to a semiconductor, electrons and holes drift
in opposite directions. However, since they have opposite charges, the intensities of
the electric currents of the two types of carriers add up. As we studied in Sect. 4.5,
the electron current density is related to the electric field E by

Jn = σn E, (5.45)

where σ n is the conductivity due to electrons, that according to Eq. (4.25) is

σn = e2 n0 τe

m∗
e

, (5.46)

where τ e is the average time between two electron collisions, that we refer simply by
electron collision time. In this expression we use the electron equilibrium concentra-
tion n0 because the application of the electric field has negligible effect on the value
of the carrier concentration. Since the conductivity results from the averagemotion of
the ensemble of electrons, it is useful to introduce a new quantity, that describes the
response of a single electron to the action of the external field. This quantity is the
mobility, defined by the ratio between the drift velocity and the electric field

μ = v

E
. (5.47)

The mobility is an important parameter because it describes how fast an electron
drifts under the action of an electric field. Comparing Eqs. (4.25), (5.46) and (5.47)
we see that the conductivity can be written as

σn = e n0 μn, (5.48)

where μn is the electron mobility, given by

μn = e τe

m∗
e

. (5.49)

This result shows that the mobility involves only intrinsic parameters of the mate-
rial. It depends on the concentrationof impurities because this has a direct effect on the
collision time. Figure 5.16 shows the variation of the electron mobility with temper-
ature in type n silicon, for various concentrations of donor impurities. Note that the
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Fig. 5.16 Electron mobility
as a function of temperature
in type n silicon, for several
values of the impurity
concentration Nd [Beadle,
Tsai, and Plummer]

mobility decreases with increasing impurity concentration, due to the decrease of τ e

resulting from electron collisions with impurities. The decrease of the mobility with
increasing temperature is due to electron collisions with thermal lattice vibrations.

Following the same procedure for electrons, we see that the current density due
to holes is given by

Jp = σp E, (5.50)

where σ p is the conductivity due to holes, that according to Eq. (4.25) is

σp = e p0 μp = e2 p0 τp

m∗
h

, (5.51)

where τ p is the collision time, p0 the concentration, andμp the mobility of holes. The
sum of Eqs. (5.45) and (5.50) gives the total current density J = σ E, where the
conductivity is

σ = σn + σp = e ( n0 μn + p0 μp). (5.52)

At each temperature, the total conductivity can be calculated using the values of
the concentrations of electrons and holes, obtained as in Sect. 5.3, and of the mobili-
ties. Figure 5.17 shows the variation of μn and μp with the impurity concentration in
silicon and gallium arsenide at T = 300 K. Note that the electron mobility in GaAs
is about five times higher than in Si, due mainly to the smaller effective mass of elec-
trons in GaAs. Of course, in a type n semiconductor the current is essentially due to
electrons, while in type p it is due to holes.
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Fig. 5.17 Mobilities of
electrons and holes in Si and
GaAs as a function of
impurity concentration at T
= 300 K [Beadle, Tsai, and
Plummer]

The electric current in a bar of a semiconductor material to which an external elec-
tric field is applied results from the mobility of electrons and holes. This field can be
created by a potential difference applied at the ends of the bar by n external circuit,
such as the one Fig. 5.18. The current in the semiconductor is the sum of the contribu-
tions of the two types of charge carriers, since electrons and holes move in opposite
directions. Of course, in the metallic wire that provides the voltage, the current
is entirely due to electrons. Thus, we need to ask what happens to the holes at the
ends of the bar. Since the current in the wire is equal to the current in the bar, the
number of electrons that go through the cross section of the wire per unit time is the
sum of the numbers of electrons and holes drifting in the semiconductor, because
their charges have the same absolute value. What happens is that at the interface
between the metal and the semiconductor at the end A, there is a process of gener-
ation of electron–hole pairs. The electrons created at interface A pass to the wire,
while the holes move in the bar towards the end B. At interface B, on the other hand,

Fig. 5.18 Illustration of the
motion of electrons and
holes in a semiconductor and
in the external electric circuit
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holes recombine with the excess electrons coming from the metallic wire, in such a
way that the number of electrons in the processes of creation and recombination of
pairs at the interfaces require that they behave as perfect sources or sinks of electrons
and holes, without any tendency to favor one of the two charge carriers. A metal–
semiconductor contact with these characteristics is called ohmic. In an ohmic contact
the resistance is the same regardless of the direction of the current used to measure
it. Actually, in real circuits, the contact between a metal and a semiconductor is never
perfectly ohmic. The properties of metal–semiconductor contacts will be studied in
Sect. 6.3.1.

Example 5.6 Calculate the resistivity of silicon at T = 300K in two situations:
(a) Intrinsic; (b) Doped with arsenic impurities with concentration Nd = 2 ×
1016 cm−3.

(a) The total conductivity is calculated with Eq. (5.52), considering n0 = p0
= ni, and using the parameters of Table 5.2 for intrinsic Si. We have

σ = e ni(μn + μp) = 1.9 × 10−19 × 1.5 × 1010 × (1350 + 480)C cm−3cm2/Vs

σ = 4.39 × 10−6 (� cm)−1.

The resistivity is the inverse of the conductivity, so

ρ = 1

σ
= 1

4.39 × 10−6
= 2.28 × 105 � cm = 2.28 × 103 � m

(b) In Si with donor impurities with Nd � ni, the electron concentration is
given by (5.37),

n0 ≈ Nd = 2 × 1016 cm−3.

Since p0 � ni, the conductivity is

σ ≈ e n0 μn.

Using the value of μn given in Fig. 5.17, we have

σ ≈ 1.9 × 10−19 × 2 × 1016 × 103 = 3.2 (� cm)−1.

and

ρ = 1

3.2
= 0.31� cm.
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Note that a relativelyweak doping (1 part out of 106) decreases the resistivity
of the silicon by six orders of magnitude.

5.4.2 Motion in a Magnetic Field: Hall Effect

Consider a semiconductor with the shape of a bar, traversed by an electric current
produced by an external circuit. If a static magnetic field is applied to the semi-
conductor, perpendicularly to the direction of motion of the carriers, they tend to
be deflected laterally, resulting in a charge accumulation that produces a potential
difference across the bar. Let us consider the geometry shown in Fig. 5.19, in which
the z direction of the coordinate system is chosen as the direction of the magnetic
field B, x is the direction of the current, and y is the transverse direction. The force
exerted by the magnetic field on a charge q is given by

�F = q �v × �B. (5.53)

Let us assume a type p semiconductor, so that the current is essentially due to the
holes. As they move in the + x direction and have positive charge, the force on them
has the − y direction. This force deflects the holes and results in the accumulation of
positive charges on the side y= − d/2 of the bar, thus leaving negative charges on the
side y= + d/2. These charges create an electric field in the+ y direction that, after an
initial transient, prevents the motion of the holes in the y direction to continue. The
value of the transverse electric field can be calculated considering that the total force
on a hole is given by

Fig. 5.19 Illustration of the
Hall effect in a
semiconductor. The
application of a magnetic
field in a bar with an electric
current generates a
transverse potential
difference VH that provides a
measurement of the charge
carrier concentration
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�F = q (�E + �v × �B). (5.54)

In steady state the y component of this forcemust be zero. Thus, the y component of
the electric field is

Ey = − (�v × �B)y = vxBz = v B. (5.55)

The generation of this transverse electric field is known as theHall effect, in honor
of Edwin Herbert Hall, who observed this phenomenon in metals in 1879. The
transverse voltage that appears in the bar, VH = Eyd, is called Hall voltage. Using
the relation between the hole current density and the drift velocity, Jp = e p0 v, we
have

Ey = Jp
e p0

Bz ≡ RH Jp B, (5.56)

where RH = (e p0)−1 is the Hall coefficient. In semiconductors, an important appli-
cation of the Hall effect is that the measurement of the Hall voltage can be used to
determine the concentration p0 of holes with good precision. Actually, the voltage
gives information about the difference between the concentrations of electrons and
holes. Note that in the case of the current produced by electrons, the velocity vx is
negative and, therefore, by Eq. (5.55) the electric field and the Hall voltage have the
opposite direction to that of holes. Thus, from the sign of the Hall voltage one can
determine which are the majority carriers in the semiconductor. In case the concen-
trations of electrons and holes are comparable, the value of the Hall voltage allows
to determine the difference (p0 − n0).

Although it was discovered more than a century ago, the Hall effect is still an
important technique for investigating the conduction properties of materials. This
technique was used by Klaus von Klitzing to study the motion of electrons confined
to two dimensions in a semiconductor. He discovered that theHall voltage varies with
the intensity of the magnetic field in steps. This is a quantum effect resulting from
the quantization of electron energy levels in the magnetic field. For the discovery of
the quantum Hall effect, von Klitzing earned the 1985 Physics Nobel Prize. The Hall
effect also has several applications. One of themost important ones is in themeasure-
ment of magnetic fields. The Hall sensor is made up of a small semiconductor bar,
traversed by a certain electric current. When placed in a magnetic field whose inten-
sity one wants to measure, the value of the Hall voltage across the sensor provides a
direct measurement of the field.

Example 5.7 A bar of type p silicon, of thickness d = 0.5 mm, with impurity
concentration Na = 1014 cm−3, is used as a Hall sensor. Calculate the Hall
voltage for a probe current of 100 mA and a magnetic field perpendicular to
the plane of B = 0.1 T.
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The Hall voltage is given by VH = Eyw, and for a current with intensity I
the current density is J = I/(wd), where w and d are, respectively, the width
and thickness of the bar. Since Na � ni, we have p0 ≈ Na � n0, so that the
current is dominated by holes. Using Eq. (5.56), we have

VH = I/(w d)

e p0
Bw = I B

e p0 d
,

and using SI units, the voltage is

VH = 10−1 × 0.1

1.6 × 10−19 × 1014 × 106 × 0.5 × 10−3
= 1.25V.

This example shows that for magnetic fields with intensities typical of those
used in laboratories, the Hall voltage has a relatively high value for electronic
circuits. This does not happen in metals, because the concentration of free
electrons (~1022 cm−3) is much larger than in semiconductors, and thus the
voltage is quite small.

5.4.3 Diffusion Current

The conduction current results from the motion of charges produced by an electric
field, that is, by the gradient of an electric potential. This is not the only gradient that
produces electric current in a semiconductor. When particles are distributed non-
uniformly in a medium, the concentration gradient produces a motion called diffu-
sion. In semiconductors, diffusion occurs when charge carriers are created in a
certain region, and flow to regions of smaller gradients. Since the carriers have
electric charge, their diffusion motion results in an electric current, called diffusion
current.

The diffusion motion is very common in physics. It is by diffusion that a drop of
color ink, placed in a glass of water, spreads in the water so that after some time it
becomes uniformly colored. The diffusion of the ink molecules in the water results
from their random motion of thermal agitation. In this process, each molecule, both
of water and of ink, moves in an arbitrary direction until it collides with another
molecule. After the collision, the molecule moves in another direction, resulting in
a completely random motion. In this way, the ink molecules, which were initially
concentrated in a certain region, after a certain time are completely diffused in the
water. In the case of a semiconductor, the diffusion of excess charge carriers, initially
concentrated in a certain region, results from their randommotion in the crystal lattice
of the material.



140 5 Semiconductor Materials

To obtain the equation that describes the diffusion motion, we shall initially
consider a simple model, in which holes move in one dimension, say the x direc-
tion. The concentration of holes in excess of equilibrium is described by the func-
tion p(x). Consider lp the average distance traveled by a hole between two collisions,
the mean free path, and τ p the average time between two collisions. Consider two
planes perpendicular to x, with coordinates x and x + �x, where �x = lp, as
in Fig. 5.20. In the random motion that characterizes diffusion, the holes that are
between the planes x and x + �x are equally likely to move in the + x or − x
direction. Likewise, the holes between the planes x − �x and x can move in either
direction with equal probability. If the concentration of holes is the same to the left
or to the right of x, the net number of holes that cross the plane is zero, and the elec-
tric current is also zero. However, if there is a gradient of hole concentration, the
current in the plane x will not be zero, it will be proportional to the difference in
concentrations to the left and to the right of x. As half of the holes between and x −
�x and x cross the plane x in the sense + x, over a period of time τ p, the current due
to these holes in a cross section of area A is approximately

1

2
e lp A p(x − �x/2) × 1

τp
,

because the current is the ratio between the total charge that crosses the section and
the time interval. To obtain the current density in the plane x, it is necessary to subtract
the contribution of the holes that are between x and x + �x crossing the plane x in
the − x direction, and dividing the difference by the area. The result is

1

2τp
e lp

[
p(x − �x

2
) − (x + �x

2
)

]
.

Assuming that the variation of p(x) with x occurs over distances much larger
than �x, we can consider �x very small, so that the expression inside the brackets
is �x dp/dx. Thus, the diffusion current density of holes in the direction + x is
given by

Fig. 5.20 Illustration of the currents flowing in and out of a region with charge of volume A Δx
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J diff
p = −e Dp

dp(x)

dx
, (5.57)

where Dp = l
2
p/2τp is the hole diffusion coefficient. The diffusion current of elec-

trons can be obtained in a similar manner. Since the electron charge is negative, its
diffusion current is given by

J diff
n = +e Dn

dn(x)

dx
, (5.58)

whereDn is the diffusion coefficient and n(x) the concentration of the electrons. Both
Eqs. (5.57) and (5.58) show that, as expected, the diffusion current will be zero if
there is no spatial variation in the concentration of carriers. These equations, obtained
assuming that the concentrations only vary in the x direction, represent the x compo-
nents of the diffusion currents. In the general case of variation in three dimensions,
the components y and z are given by similar expressions with derivatives of the
concentrations with respect to y and z. Thus, generalization of Eqs. (5.57) and (5.58)
leads to two equations involving the gradient operator

J diff
p = −e Dp ∇p , (5.59)

J diff
n = +e Dn ∇n. (5.60)

With Eqs. (5.59) and (5.60) one can calculate the diffusion currents of holes and
electrons from the gradients in their concentrations. In most situations, however,
these are not known a priori, they need to be calculated. To obtain the equations that
provide the evolution of the concentrations, it is necessary to have another indepen-
dent relation between the diffusion current and the concentration. To obtain this rela-
tion, we shall initially consider the one-dimensional model in Fig. 5.20 to relate the
current density to the temporal variation of the density. Let us also assume, initially,
that the phenomenon of generation and recombination of electron–hole pairs is negli-
gible. Note that the net current I that enters the volume indicated in the figure, divided
by the volume, is the difference of the current densities in x and in x + �x, divided
by �x,

I

A�x
= J (x) − J (x + �x)

�x
.

Since I = dq/dt, this result leads, in the limit�x → 0, to the following differential
equation,

∂ρ

∂t
= −∂J (x)

∂x
, (5.61)
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where ρ = q/(A�x) is the volume charge density. This is the equation of
charge continuity, that expresses the fact that the total charge is conserved. If
the current density also has components y and z, Eq. (5.61) can be generalized to
three dimensions

∂ρ

∂t
= −

(
∂Jx
∂x

+ ∂Jy
∂y

+ ∂Jz
∂z

)
,

or

∇ · �J = −∂ρ

∂t
. (5.62)

This is the equation of charge continuity in three dimensions. This equation is valid
whatever the source of the current is. Notice that it is contained in Maxwell’s equa-
tions studied in Chap. 2. Since ∇ · ∇ × �A = 0 for any vector field �A, the operation
∇· in Eq. (2.4), together with Eq. (2.1), reproduce the continuity Eq. (5.62).

Notice that in a semiconductor, the charge densityρ is related to the concentrations
of electrons and holes by

ρ = e (p − n). (5.63)

To obtain the equation for the evolution of the concentration, let us suppose,
to simplify, a semiconductor type n, that is, only with electrons in excess of
equilibrium. From Eqs. (5.62) and (5.63) we have

∇ · �J = e
∂n

∂t
. (5.64)

Substituting this result in Eq. (5.60), and operating on both sides with the
operator ∇· we obtain

Dn∇2n − ∂n

∂t
= 0. (5.65)

This is the diffusion equation, with which we can calculate the spatial and
temporal evolutions of the concentration of excess electrons, subject only to thermal
agitation. An identical equation holds for the concentration p of holes, with the
corresponding diffusion coefficient Dp, and also for the concentration of blue ink
molecules in the glass of water. The diffusion equation shows that as long as there is
a spatial variation in the concentration, therewill also be variation in time. Figure 5.21
shows the evolution of the electron concentration n(x) after the production of an elec-
tron pulse in the position x = 0 at an instant of time t = 0. If at t = 0, electrons are
concentrated at x = 0, the concentration is represented by the Dirac delta function,
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Fig. 5.21 Illustration of the
diffusion of electrons created
by a pulse at x = 0 at the
instant t = 0. The curves
represent n(x) at times t1 < t2
< t3

n(x) = δ(x). Then, at t > 0, the electrons diffuse to regions of lower concentra-
tion. The solution of Eq. (5.65) is a Gaussian function (Problem 5.17), which gradu-
ally expands with time and decreases in amplitude, as shown in Fig. 5.21. Since the
total number of electrons is conserved, the area under the curve does not vary over
time. After a long time, n(x) is uniform, so that ∇2n = 0, and hence n(x) is uniform
and constant.

If, in addition to the concentration gradients, there is an electric field �E applied
to the semiconductor, the electron and hole current densities will have conduction
and diffusion components, and can be written as

�Jn = −eμn n �E + e Dn ∇n, (5.66)

�Jp = eμp p �E − e Dp ∇p, (5.67)

and the total current density is

�J = �Jn + �Jp. (5.68)

Aswe shall study in the next chapter, all components of the current are relevant for
the operation of semiconductor devices. It is the electric field and the concentration
gradients of the carriers in the region of a junction of two types of semiconductors
that determine the relation between voltage and current in a junction device and,
therefore, its functioning.

To conclude this section, let us obtain an important relation between the diffusion
coefficient and the mobility. When the semiconductor is in thermal equilibrium, with
no external electric field, both the electron and the hole currents must be zero. In this
situation if, due to the thermal motion, there is a variation in the concentrations of the
charges, the electric field created by the charges produces a drift current that cancels
the diffusion current. The relation between this internal field �E and the equilibrium
concentration gradient can be obtained from Eqs. (5.66) and (5.67) with �Jn = �Jp =
0. Since the electric field is the gradient of the electric potential
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�E = −∇φ, (5.69)

from Eq. (5.67) with �Jp = 0 we obtain

μp

Dp
∇φ = − 1

p0
∇p0, (5.70)

where p0 is the hole equilibrium concentration. A relationship analogous to (5.70)
holds for electrons. Substituting in (5.70) the expression of p0 given by (5.32) we
obtain

μp

Dp
∇φ = − 1

kBT
∇(Ei − EF ). (5.71)

The Fermi level cannot vary with the position since the system is in equilibrium,
therefore ∇EF = 0. On the other hand, the energy of an electron in the elec-
tric potential φ is E = − eφ. This means that if the electric potential varies in space,
the electron energy levels and the energy bands accompany the electric potential,
that is, ∇Ei = −e∇φ. Using this relation in Eq. (5.71) one obtains

Dp

μp
= kBT

e
. (5.72)

Since the relation obtained for electrons is identical, we can write

Dp

μp
= Dn

μn
= kBT

e
. (5.73)

This important result, known as theEinstein relation, makes possible to calculate
the diffusion coefficient from the values of the measured mobilities, or vice versa.
Notice in Table 5.2, that the ratio D/μ for Ge, Si, and GaAs, is close to 0.026 eV,
which is the value of kBT at T = 300 K.

5.4.4 Injection of Carriers: Diffusion with Recombination

Avery important process in the operation of devices is one in which carriers in excess
of equilibrium are introduced into a region of the semiconductor by some external
mechanism. This is called injection of carriers. This occurs, for example, when
electrons, that are the majority carriers in type n semiconductor, flow into the p-side
in a p–n junction. We say that in the region of the junction, electrons from the n-side
are injected into the p-side.

In the carrier injection process, the mechanism of electron–hole pair recombina-
tion cannot be neglected, as we did in the previous section. Since the injected carriers
are in excess of the equilibrium concentration, the recombination process results in
a decrease of the concentration towards equilibrium. Consider, for example, holes
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injected into a semiconductor so that at a certain instant the concentration is

p = p0 + δp. (5.74)

The recombination of holes in excess of equilibrium with electrons in the semi-
conductor occurs at a rate that increases with increasing δp. In a first approach, the
process can be described by

∂δp

∂t
= −δp

τp
, (5.75)

where τ p is the hole recombination time. Note that if there is no other mechanism
acting for the evolution of δp, the solution of Eq. (5.75) is

δp(t) = A e−t/τp , (5.76)

whereA is the value of δp at the instant t = 0. This result shows that the recombination
acts tomake the excess of carriers to decay exponentially in time,with a characteristic
time τ p. In the case of electrons, the excess concentration is described by an equation
similar to Eq. (5.75), with a recombination time τ n,

∂δn

∂t
= −δn

τn
, (5.77)

The carriers injected into a certain region of the semiconductor produce a concen-
tration gradient that, in turn, results in a diffusion current. Thus, in the injec-
tion process, the spatial and temporal evolution of the carrier concentration is deter-
mined by the diffusion and recombination processes. To obtain the equation that
describes both processes, we subtract from the time derivative of the concentra-
tion in the diffusion Eq. (5.65), the term that describes the recombination given by
Eq. (5.77). Combining (5.65) with (5.77) and taking into account that ∂n0/∂t = 0,
since the equilibrium concentration is constant, we obtain for electrons

∂δn

∂t
= Dn∇2δn − δn

τn
, (5.78)

A similar development for holes leads to

∂δp

∂t
= Dp∇2δp − δp

τp
. (5.79)

These are the diffusion equations with recombination for electrons and
holes. They make possible to calculate the evolution in space and time of the concen-
trations of carriers injected in a region of the semiconductor. If a pulse in the concen-
tration of electrons is produced in the position x = 0 at t = 0, the evolution of the
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pulse in time is similar to that of Fig. 5.21. The difference to the case described in the
previous section, proposed in Problem 5.17, is that the area under the curve now
decreases with time. This is due to the pair recombination process, which causes
the electron concentration in excess of the equilibrium to decay exponentially with
the characteristic time τ n. If, in addition, there is an electric field along the bar, as
the pulse concentration widens and decreases in area, it shifts due to the effect of the
electron drift.

To conclude this Chapter, we shall apply the diffusion equation with recombi-
nation to the case of injection in steady state. This is what happens, for example,
when a light beam of falls on a region of a semiconductor with constant inten-
sity. The photons produce electron–hole pairs in the illuminated region. If the beam
intensity is constant, after the transient that occurs when the light begins to fall,
the process enters a steady state regime. In this situation, the rate of creation of pairs
is constant and the time derivative is zero. This is also what happens with a constant
electric current through a p–n junction. When majority carriers on one side arrive
at the junction, they are injected into the other side at a constant rate. In steady
state ∂/∂t = 0, and from Eqs. (5.78) and (5.79) we obtain

∇2δn = δn

L2n
, (5.80)

∇2δp = δp

L2p
, (5.81)

whereLn = √
Dnτn andLp = √

Dpτp are thediffusion lengths of electrons and holes,
respectively. The reason for this name becomes clear with the following example:
Consider a semi-infinite semiconductor bar, in which holes are injected uniformly in
x = 0 at a constant rate, so that the excess concentration is kept constant at this
point, δp(x = 0) = �p. The injected holes diffuse along the bar and recombine
with electrons. This results in a distribution of excess concentration along the bar,
characterized by the function δp(x). To obtain this function we use Eq. (5.81) and
consider in the Laplacian operator ∂2/∂y2 = ∂2/∂z2 = 0, so that

d2δp(x)

dx2
= δp

L2p
. (5.82)

The solution of this equation is

δp(x) = C1 e
−x/Lp + C2 e

x/Lp . (5.83)

where C1 and C2 are constants determined by the boundary conditions. Due to
the recombination along the bar, δp should tend to zero at x → ∞. Thus, we must
have C2 = 0. Since δp(x = 0) = �p, we have C1 = �p. Therefore

δp(x) = �p e−x/Lp . (5.84)
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Fig. 5.22 Variation of the
hole concentration with
x due to diffusion, produced
by injection at x = 0 with a
constant rate

This function is shown in Fig. 5.22. The holes injected in x = 0 at a constant rate
in time, produce a concentration in excess the equilibrium that falls exponentially
with x. The characteristic length of this exponential is Lp, the hole diffusion length.

The value of diffusion length depends on the type of carrier, on the semiconductor
material, and on the impurity concentration. The dependence on the carrier and
on the material is due both to the diffusion coefficient D (see Table 5.2) and the
recombination time τ . The dependence on the impurity concentration is also due to
τ . Larger impurity concentrations result in shorter the recombination times. Since D
varies in the range 10–200 cm2/s, and τ is in the range 10−7–10−6 s, the diffusion
length L = (D τ )1/2 is typically in the range of 10−3–10−2 cm, or 10–100 μm.

The results of this section will be extensively used in the next two chapters,
since the diffusion motion of electrons and holes play a key role in the operation of
semiconductor junction devices.

To close this chapter, we remark that we have treated the effects of impurities
in the transport properties of semiconductors in a very simplified way. We have
considered that the only role of the impurities is to increase the number of electrons
in the conduction band, in the case of n-type, or to increase the number of holes in
the valence band, in the case of p-type semiconductors. In both cases electrons and
holes are treated as quasi-particles described by Bloch’s functions as in Eq. (5.4.5),
having effective masses determined by the curvatures of the conduction and valence
bands, as in Eqs. (5.3) and (5.7). Actually, besides the introduction of charge carriers
into the conduction and valence bands, the impurities create disorder in the crystal
lattice, because their distribution is random.When the impurity concentration is very
low, the Bohr radius of a single impurity wavefunction, as studied in Sect. 5.3.1, is
much less than the average distance between impurities. In this case, the impurity
levels are the same as for a single impurity, as assumed here, because the dopants
do not feel the effects of the neighbors. Also, it is a good approximation to consider
that the crystal potential remains the same as in the pure material, and the bands E(k)
keep the same dispersion, with k remaining a good quantum number.



148 5 Semiconductor Materials

However, as the impurity concentration increases, there is a critical value such
that the disorder becomes strong enough to prevent transport. For concentrations
above this value, the system is no longer periodic, thus the carriers can no longer be
described exactly by Bloch’s functions. In this case, the carriers undergo multiple
scatterings by the impurities and become trapped to a finite region, preventing the
drift and diffusion motions as studied here. This trapping is known as Anderson
localization, in honor of PhilipW.Anderson, who first proposed this effect. Anderson
was awarded the Physics Nobel Prize in 1977 for this and many other contributions
to the theory of condensed matter physics.

Problems

5.1 Use a development similar to that of Sect. 4.3 to demonstrate that the effective
mass of the holes is given by the expression (5.7).

5.2 Show that in an intrinsic semiconductor, with parabolic bands, the Fermi level
is given by Eq. (5.22).

5.3 (a) Show that the effective concentrations of electrons andholes,Nc andNv,
can be calculated numerically with the expression

Nc,v(T ) = 2.54

(
m∗

c,v

m0

T

300

)3/2

× 1019 cm−3,

where T is the temperature in K. Apply this expression to Si and Ge
and compare with the values in Table 5.2.

(b) Calculate the values of ni at T = 300 K for Ge, Si and GaAs, from
the data in Table 5.2, and compare with the values in that Table and in
Fig. 5.8.

5.4 Calculate the distance between the Fermi level and the middle of the gap in
pure Si and in GaAs at 300 K. Explain why EF is not in the middle of the gap.

5.5 Using the data in Table 5.2, calculate the ionization energy of donor impurities
in Si using the hydrogen atom model developed in Sect. 5.3.1.

5.6 Consider a type p semiconductor with acceptor impurity concentration Na,
all ionized, at a temperature such that ni � Na.

(a) Using the law of mass action (5.30) and the charge neutrality
Eq. (5.33), obtain the expressions for the concentrations of electrons
and holes (5.41) and (5.42).

(b) Using the results of item (a) and Eqs. (5.28) and (5.32), show that
the Fermi level is given by (5.43) or (5.44).

(c) Show thatEi given by (5.22) is consistent with the expressions obtained
in item c).

5.7 Three silicon wafers are doped with as impurities with concentrations 1016,
1017, and 5 × 1018 atoms/cm3. Consider T = 300 K and assume that all
impurities are ionized.
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(a) Calculate the Fermi level in each wafer.
(b) Check if the approximation of Eq. (5.15) for the Fermi–Dirac function

is good in the three cases.
(c) Calculate the resistivity of each wafer.

5.8 The probability of electron occupation of the discrete energy levels of
the impurities is not given simply by the Fermi–Dirac statistics. It can be
shown that the concentration of ionized donor impurities is given by (see
Ashcroft and Mermin)

N+
d = Nd

1 + (1/2) e(Ed−EF )/kBT
,

where Ed is the energy level and Nd the concentration of the impurities.

(a) Check if the assumption of complete ionization is good in the three
wafers of Problem 5.7.

(b) Make a plot of N+
d /Nd as a function of T for the wafer of Problem 5.7

with the largest concentration, assuming that Eg does not vary in the
temperature range of 0 to 400 K.

5.9 A wafer of GaAs is doped with donor impurities with a concentration of 1017

atoms/cm3. Assuming that all impurities are ionized, calculate the resistivity
of the wafer and compare with the value obtained in problem 5.7 for Si with
the same concentration.

5.10 Calculate the concentrations of donor impurities that make Si and GaAs
degenerate (EF = Ec).

5.11 Consider a silicon wafer doped with acceptor impurities with concentration
Na = 2 × 1014 cm−3 and assume that they are all ionized.

(a) Calculate the concentrations of electrons and holes at T = 300 K. In
this situation, is the semiconductor considered intrinsic or extrinsic?

(b) Calculate the concentrations of electrons and holes at T =
600 K, considering that at this temperature the gap decreases to
1.0 eV and that the effectives masses are approximately the same as
at room temperature. In this situation, is the semiconductor intrinsic
or extrinsic?

5.12 (a) Explain, qualitatively, using few words and some plots, why
the Fermi level in a type n semiconductor is closer to the conduc-
tion band than the valence band, and in a type p it is closer to the
valence band.

(b) Explain, qualitatively, using few words and some plots, how the Fermi
level varies with temperature in a type n semiconductor.

5.13 A thermistor is a resistor whose resistance varies with temperature. Consider
a thermistor made of intrinsic Silicon, that at T = 300 K has a resistance of
500 �.
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(a) Assuming that the mobility does not vary with temperature, calcu-
late the rate of change of resistance with temperature around 300 K,
expressed in � /oC.

(b) What is, approximately, the resistance of the thermistor at T = 302 K?

5.14 A Germanium bar has a Length of 1 cm and a square cross-section with side
of 1 mm.

(a) Calculate the resistance between the two ends of the bar at T = 300K in
the case of the intrinsic semiconductor.

(b) Consider that the bar is doped with a certain concentration of donor
impurities Nd . Assuming that the mobility is the same in the pure
material, what is the value of Nd for the resistance to be 10 � at T
= 300 K?

5.15 A semiconductor bar with concentration of majority carriers 1016 cm−3 has
width w = 1 mm and thickness d = 0.5 mm. What is the Hall voltage on the
bar when subjected to a magnetic field B = 0.1 T (1 kG) and traversed by a
current of 100 mA?

5.16 A semi-infinite bar made of a semiconductor material has a stationary
hole distribution shown in Fig. 5.22. This distribution is maintained by a
certain constant current I, entering at the end of the bar at x = 0 through a
metallic contact.

(a) Using expression (5.57) for the diffusion current, calculate the current
I = Ip (x = 0) as a function of Lp, Dp, and the excess concentration δp
at x = 0.

(b) Show that this current is equal to the total charge at x > 0, obtained by
integrating the hole distribution δp(x), divided by the hole lifetime τ p.
Explain why this calculation leads to the same result as in item (a).

5.17 Consider a semiconductor in the form of a bar like the one in Fig. 5.20,
with an electron concentration in excess of equilibrium described by
a Gaussian function of the position x, at a time t, given by

δn(x, t) = �N0

2
√

π Dn t
e−x2/4Dnt,

where �N0 is the number of electrons per unit area at t = 0, in the region
between two sections spaced by a very small distance Δx around x = 0.

(a) Show that this Gaussian function is a solution of the diffusion equation
for electrons, Eq. (5.65).

(b) Show that at very small t this distribution tends to Aδ(x), where A is
a constant and δ(x) is the Dirac delta function. Calculate the value of A.

(c) Make a qualitative plot of δn(x), for a generic instant t1. At this
instant, calculate the width �x of the distribution, defined as the
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distance between two points at which the value of the distribution is
δn(0)/2. Obtain the relationship between the diffusion coefficient Dn,
the width �x and the instant t1. From this result, suggest a method to
measure the diffusion coefficient.
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Chapter 6
Semiconductor Devices: Diodes

The topics studied in the previous chapter for homogeneous semiconductors can
now be used to understand the behavior of devices made of regions with different
dopings. In this chapter we consider the p–n junction formed by a semiconductor
containing both p- and n-regions. The p–n junction is a device itself, used in
rectification, switching, and other operations in electronic circuits. It is also a
building block for various other semiconductor-based devices, such as the
transistor, that will be considered in the next chapter. Here we study several
features and applications of p-n junctions and also of heterojunctions formed by
semiconductors and metals.

6.1 The p-n Junction

The fact that several regions of the same semiconductor material can be doped with
different impurities enables the fabrication of a wide variety of electronic devices.
Almost all semiconductor devices contain at least one p–n junction, that consists of
a piece of a semiconductor material with a p-type region next to an n-type region,
separated by a thin transition layer. The thickness of the transition layer depends on
the manufacturing method, ranging from 0.01 to 1 µm. The behavior of electrons
and holes at the junctions of a device determines the current–voltage (I − V )
characteristics of its various terminals. For this reason, this Chapter starts with a
detailed study of the p–n junction. It will serve as the basis for understanding the
operation of many semiconductor devices. In the following section we derive the
I − V characteristics of the junction diode, the simplest device of all, consisting of
just one p–n junction. In the following sections we shall describe the operation of
other types of diodes. Transistors and others active devices will be presented in
Chap. 7. More detailed information on the techniques for the fabrication of
semiconductor devices and on other specific properties can be found in several
books listed in the Further Reading. Semiconductor devices for applications in
opto-electronics will be presented in Chap. 8.
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6.1.1 Fabrication of p-n Junctions

The technology for preparation of semiconductor junctions has evolved tremendously
since the early days of the commercial fabrication of semiconductor devices in the
1950s. The methods most used today are diffusion and ion implantation, mentioned
in Sect. 5.3. Figure 6.1 shows the basic steps in the manufacture of a p–n junction
by diffusion, with the planar technology introduced in the beginning of the 1960s.
The first step consists in the preparation of the semiconductor crystal wafer, the
substrate, shown in Fig. 6.1a. Most semiconductor devices are made with single
crystal Si wafers. The wafer, with thickness of some tenths of mm, is obtained by
slicing a cylindrical Si ingot, like the one in Fig. 1.11, and polishing one of its
surfaces. In general, the Si crystal ingot is grown with high concentration of n-type
impurities, which is denoted by n+. The high n concentration enables the formation
of ohmic contacts with the metallic layer deposited later (Fig. 6.1f).

Fig. 6.1 Illustration of the steps used to manufacture a p–n junction with planar technology. a Si
wafer used as a substrate. b Substrate with a layer of epitaxial Si doped with n-type impurities.
c Oxide layer grown on the Si layer. d Photolithographic process used to produce a pattern on the
positive photoresistive film. e Diffusion of p-type impurities through the window in the oxide layer.
f Complete structure of the junction with the metal contacts
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The next step consists in growing on the n+ substrate a layer of n-type Si with
lower impurity concentration, using a technique for epitaxial growth (Fig. 6.1b). The
wafer is then taken to an oven with an oxygen atmosphere to form a thin layer of SiO2

oxide (Fig. 6.1c). Next, a photolithographic process is used to selectively remove the
oxide from some regions to allow the diffusion of impurities. The process makes
use of the effect of ultraviolet (UV) radiation on a film of a photoresistive liquid,
or photoresist, or simply resist, that is spread over the oxide layer in a spin coater.
Positive photoresists have a chemical structure that changes after UV exposure,
so that they become soluble in a developer solution. On the other hand, negative
photoresists become insoluble after UV exposure. Both are also commonly used in
photolithography techniques. We consider here the first type. After the spread of the
positive resist, the wafer is placed in a baking oven for drying. The formation of the
pattern in the Si layer is made by shinning UV light through a photomask containing
opaque and transparent areas, as in Fig. 6.1d.

The next step consists in using a solvent to remove the resist from the exposed
regions. Then, the wafer in placed in an acid bath, which corrodes the oxide layer
in the regions where the resist was removed. This process opens a window in the
oxide layer through which diffusion of type p impurities is made in an oven at
high temperature (on the order of 1000 °C), containing a gas with the impurities
(Fig. 6.1e). Finally, the structure is completed with the deposition of metallic films
for the external contacts (Fig. 6.1f).

The planar technology is used to manufacture a simple diode junction, or a
transistor with multiple junctions, or a complex integrated circuit containing a large
number of diodes, transistors and resistors on the same Si chip. A very important
component in the processing of the wafer is the mask containing the pattern of the
circuit to be produced. Until the 1990s, the original layout was drawn on a paper in
large scale to increase its resolution, and later photographically reduced to the full
scale of the mask. Currently, the whole process is made on computers using
sophisticated softwares. For modern high-integration circuits, in which the lateral
dimensions of the structures are much less than 1 µm, the masks are produced on
the real scale by electron beams.

6.1.2 The Potential Barrier at the p-n Junction

To treat mathematically the equations that describe the charge and the electric
potential in a junction it is necessary to make some approximations to the actual
junction. The first is to reduce the problem to one dimension. As we can see in
Fig. 6.1f, due to the shape of the junction and contacts, the motion of electrons and
holes in most part of the device occurs in the direction normal to the surface that
separates the p and n regions. Therefore, the assumption that quantities vary only in
one direction, say x, is a good approximation to the actual problem. The second
approach refers to the separation between the p and n regions. In the real junction,
the variation in the concentration of impurities near the interface is gradual. The
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difference in the concentrations of the impurities, Na − Nd , gradually changes
from positive in the p region, to negative in the n region, as shown by dashed line of
Fig. 6.2a. However, to simplify the problem, we assume that the junction is abrupt,
that is, Na − Nd varies sharply from a positive constant value at x < 0 to a negative
constant value at x > 0, like a step function, as in the full line of Fig. 6.2a.
Figure 6.2b shows the one-dimensional model for an abrupt p–n junction, which
we consider in this section.

To understand what happens at the junction in equilibrium, let us assume that the
p and n regions of the semiconductor are physically separated before the junction is
formed. In this situation, the Fermi level is close to the conduction band on the n-side
and next to the valence band on the p-side, as illustrated in Fig. 6.3a. Suppose now
that the two materials are brought into contact to form the junction. Since electrons
are in excess of holes on the n-side, there is electron diffusion from side n to side p.
Similarly, holes diffuse from side p to side n. The diffusion of charges from one side
to the other produces two layers of charges, illustrated in top of Fig. 6.3b, formed
by ionized impurities, donors on the n-side and acceptors on the p-side. These layers
of charges create an electric field �E directed from n to p, which exerts a force on
the electrons and the holes opposing the continuation of their diffusion motion. The
electric field pushes the holes back to side p and the electrons back to side n, by

Fig. 6.2 aVariation of the concentration of impurities in a p–n junction. The dashed line represents
the variation in a real junction, while the solid line represents an ideal abrupt junction. b One-
dimensional abrupt junction model
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Fig. 6.3 a Energy bands and Fermi levels of two regions of a semiconductor doped with p and
n impurities, physically separated. b Charge, electric field, electric potential, and energy levels in
the space charge region in the p–n junction

means of a drift current that opposes the diffusion current. In the equilibrium regime,
drift and diffusion currents cancel each other, both for electrons and holes, so that
the total current is zero. In this situation, the distribution of charges and the electric
field acquire a stationary configuration.

The region near the junction where there are unbalanced charges, shown in
Figs. 6.2 and 6.3b, is called space charge region. This region is also called
transition layer, or depletion layer. The electric field created in this region
corresponds to a potential difference V 0 between side n and side p. This potential
difference tends to prevent the motion of majority carriers on the p-side (holes) to
the n-side, and majority carriers on the n-side (electrons) to the p-side. Due to the
shape of the potential variation, illustrated in Fig. 6.3b, it is called a potential
barrier. The formation of the potential barrier is the most important physical
phenomenon that occurs at the junction, because it is responsible for its electric
characteristics. The shape of the potential barrier also has an important effect on the
behavior of the energy levels in the junction. Since the energy of the electron is
related to the electrostatic potential φ by E = − e φ, the difference between the
energies of the conduction band Ecp in the p-side and Ecn in the n-side is given by

Ecp − Ecn = −e (φp − φn) = eV0. (6.1)
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Therefore, the difference in energies is, in units of eV, the heightV 0 of the potential
barrier. This means that when the junction is formed, the references to the energy
levels on the p and n sides adjust themselves so that the difference in the energies of
the conduction band on the two sides, as well as of the valence band, corresponds to
the potential difference due to the electric field created by the charges at the junction.
This change in the reference levels is a consequence of the fact that the Fermi level
EF must be the same on both sides of the junction, as shown in Fig. 6.3b. The figure
also shows that, since the lowest possible value of EF on the p-side is Evp, and the
highest value of EF on the n-side is Ecn, the limit value of the potential barrier is V 0

= Eg/e. The height of potential barrier approaches this limit when the two regions
of the junction are heavily doped.

In fact, the explanation for the shape of the potential barrier could have started
by analyzing the Fermi level, since it is related to the chemical potential of a
thermodynamic system, which must be uniform when the system is in equilibrium.
We can draw an analogy between the Fermi level and the level of water in a
reservoir, since all water molecules have energy (gravitational) lower than those at
the surface. When two reservoirs with different levels are interconnected, part of
the water of the tank with higher level goes to the other tank until the levels are the
same. What happens when two semiconductors are placed in contact is analogous.
The charges flow from one side to the other until the Fermi levels become equal.
When this occurs, the system reaches equilibrium. The value of the potential
difference V 0 of the barrier at the junction at equilibrium, also called contact
potential, can be calculated in various ways: the simplest is based on the facts that
the Fermi level is uniform at the junction and the intrinsic semiconductor is the
same in the two regions. With Eq. (5.32) we can write the relation between the
energies and the equilibrium concentrations of holes, pp0 on the p-side, and pn0 on
the n-side, in regions away from the junction

pp0 = ni e
(Eip−EF )/kBT ,

pn0 = ni e
(Ein−EF )/kBT .

The ratio between the two concentrations is then

pp0
pn0

= e(Eip−Ein)/kBT . (6.2)

Since the intrinsic semiconductor is the same at the p and n regions, we see
in Fig. 6.3b that the difference between the intrinsic Fermi levels on both sides is
precisely the value of the potential barrier in units of eV,Eip −Ein = eV 0. Substitution
of this expression into Eq. (6.2) gives

V0 = kBT

e
ln

pp0
pn0

. (6.3)
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This same result can also be obtained by integration of Eq. (5.70), that expresses
the fact that in a junction in equilibrium the total current of holes is zero (Problem
6.3). We can also relate the contact potential with the concentrations of electrons on
both sides of the junction. Starting from Eq. (5.31) we obtain

V0 = kBT

e
ln

nn0
np0

. (6.4)

This result can also be obtained from Eq. (6.3) using the law of mass action.
Equations (6.3) and (6.4) can be rewritten in the form

pp0
pn0

= nn0
np0

= eeV0/kBT . (6.5)

Finally, using the relations obtained in Chap. 5, we can express the contact
potential in terms of the concentrations of impurities on both sides of the junction.
In the p-region, the holes are the majority carriers and their concentration is, by
Eq. (5.42), pp0 ≈ Na. On the other hand, in the n-region, according to (5.38),
pn0 ≈ n2i /Nd . Using these values in Eq. (6.3) we obtain,

V0 ≈ kBT

e
ln

NaNd

n2i
, (6.6)

and using Eq. (5.25) this result can be written as

V0 ≈ Eg

e
− kBT

e
ln

NcNv

NaNd
. (6.7)

This is a very convenient expression to calculate the contact potential, using only
the parameters of the semicontuctors of the junction.

Example 6.1 Consider a p–n junction made with Si, having concentrations
of impurities Nd = 1016 cm−3 and Na = 1018 cm−3. Calculate the contact
potential of the junction at T = 300 K.

Using kBT = 0.026 eV and the values of Eg, Nc and Nv in Table 5.2, we
obtain with Eq. (6.7)

V0 = 1.12 − 0.026 × ln
2.6 × 1019 × 1.02 × 1019

1018 × 1016
.

V0 = 1.12 − 0.026 × 10.18 = 0.85V.

For a junction of Ge with the same concentrations of impurities as in the Example
6.1, it can be shown that (Problem 6.1) V 0 = 0.45 V. Notice that as the concentrations
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of impurities increase, the second term in Eq. (6.7) decreases andV 0 approachesEg/e.
Thus, the maximum value of the contact potential is 0.66 V in a Ge junction and
1.12 V in a Si junction.

6.1.3 Charge and Field at the Junction in Equilibrium

The contact potential calculated in the previous section is the potential difference
between a point in the p-side and a point in the n-side, both away from the junction.
To calculate the electric field it is necessary to obtain the variation of the potential
gradient in the space charge region, which depends on charge distribution in the
region. Instead of solving the complete problem self-consistently, we shall
approximate the charge distribution by a simple function to calculate the field and
the potential from it. To obtain this distribution we consider what happens in the
space charge region, illustrated in Fig. 6.4a.

Electrons and holes are in permanent transit, passing from one side of the junction
to the other. Some electrons pass from the n-side to the p-side by diffusion, recombine
with holes or are “pushed” back to the n-side by the force of the electric field.
The same goes for holes on the other side. As a result, there are few electrons
and holes in the space charge region because they are swept by the electric field.
This exhaustion of mobile charges from the space charge region is the reason for
the name depletion region. In this way, the charges in the region are due to the
ions of uncompensated impurities, donors on the n-side and acceptors on the p-side.
Having the donor impurities, with concentration Nd , lost their electrons, their charge
is positive. On the other hand, acceptor impurities, with concentration Na, receive
electrons and become negative. Thus, in a first approximation, we can consider that
in the n-side, the charge density has value ρ = +eNd that is uniform in a layer of
thickness ln, and zero outside. On the other hand, in the p-side the density is ρ =
−eNa in a layer of thickness lp and zero outside, as illustrated in Fig. 6.4b. This
is called the depletion approximation. As the total charge must be zero, since the
junction is electrically neutral, the moduli of the total charges on the two sides are
the same. Since the charge in each side is equal to the product of the charge density
by the volume, it is easy see that the thicknesses of the layers are related to the
concentrations of impurities by

ln Nd = lp Na. (6.8)

Since the total thickness of the space charge region is l = lp + ln, we can express
the thicknesses of the two charge layers in terms of the concentrations of impurities
in the two sides

lp = Nd

Na + Nd
l, ln = Na

Na + Nd
l. (6.9)
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−lp

−lp
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ln

−E0

Fig. 6.4 Variation along x of the charge density, electric field, and electrostatic potential in the
one-dimensional model of the p–n junction

These equations show that the thickness is larger on the side with lower doping.
To calculate the electric field from the distribution of charges, we use Gauss’s law in
the differential form, Eq. (2.1). Considering a spatial variation only in the x direction,
using the relation �D = ε�E, Eq. (2.1) can be written as

dE

dx
= ρ(x)

ε
, (6.10)

where ρ = −eNa, at −lp < x < 0 and ρ = eNd at 0 < x < ln. Integration of (6.10)
with these densities results in a linear variation of the electric field on each side, as
shown in Fig. 6.4. For − lp < x < 0 we have

E(x) = −e Na

ε
x − E0, (6.11)
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where E0 is an integration constant, that corresponds to the value of E at x = 0. Since
E (x = −lp) = 0, because the field is zero outside the space charge region, from
(6.11) we have E0 = eNalp/ε. From (6.10) we also see that, at 0 < x < ln

E(x) = e Nd

ε
x − E0, (6.12)

where the integration constant, determined by E (x = ln) = 0, must be the same one
obtained with (6.11). In fact, using Eq. (6.8), we see that

E0 = e Na lp
ε

= e Nd ln
ε

. (6.13)

Figure 6.4c shows the variation with x of the electric field given by Eqs. (6.11)
and (6.12). Note that the field is different than zero only in the space charge region,
and is directed along −x, as expected. From the expressions of the electric field, we
can obtain the variation of the potential φ (x), using the relation E (x) = −dφ/dx.
The function whose derivative is Eq. (6.11), with the sign reversed, is

φ(x) = 1

2

e Na

ε
x2 + E0 x + C,

where C is a constant with a value that depends on the choice of the reference for
the potential. Taking as reference φ (x = −lp) = 0, and replacing the expression for
E0 in (6.13), we obtain C = e Na l2p/2. Thus, the potential at −lp ≤ x ≤ 0 is

φ(x) = e Na

2ε
(x + lp)

2. (6.14)

To calculate φ (x) at x ≥ 0, we integrate Eq. (6.12) in an analogous way and
determine the integration constant by equating the expressions for the potentials in
the two sides at x = 0. The result is, for 0 ≤ x ≤ ln

φ(x) = −e Nd

ε

(
1

2
x2 − ln x − 1

2
lp ln

)
. (6.15)

The variation of the potential with x given by Eqs. (6.14) and (6.15) is shown in
Fig. 6.4d. As expected, it has the shape of the potential barrier in Fig. 6.3b. The value
of the contact potential V 0 is the difference between the potentials at points x = ln
and x = −lp, which is simply the value of the potential at x = ln. Using (6.15) and
the expression for E0 in (6.13) we obtain

V0 = φ(ln) = e Nd

2ε
ln l = 1

2
E0 l. (6.16)
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Since the potential difference between two points is the integral of the electric
field, the result (6.16) could have been easily obtained by the area of the triangle that
represents the variation ofE(x) shown inFig. 6.4c. Starting fromEqs. (6.9) and (6.16),
it is possible to relate the thicknesses of the charge layers with the concentrations of
the impurities and the contact potential. It is easy to show that

V0 = e

2ε

NaNd

Na + Nd
l2, (6.17)

from which we obtain for the thickness of the space charge region

l =
[
2ε V0

e

(
1

Na
+ 1

Nd

)]1/2

. (6.18)

To obtain an expression for the thickness as a function only of the parameters of
the semiconductor, we substitute (6.6) into (6.18). The result is

l =
[
2ε kBT

e2

(
1

Na
+ 1

Nd

)
ln

NaNd

n2i

]1/2

. (6.19)

With this expression and Eqs. (6.9) it is possible to calculate the thicknesses lp
and ln of the charge layers on both sides of the junction. Finally, we note that, as
the potential difference between the two sides is produced by two charge layers,
the junction has a capacitance C. Denoting by A the area of the cross section of the
junction, the total charges in the layers are +Q and −Q, where Q = eNdlnA. In the
case the charges are distributed in the two layers, the capacitance is defined by C
= dQ/dV. From Eqs. (6.9) and (6.18) we then obtain (Problem 6.5) for the junction
capacitance

C = ε A

l
, (6.20)

where l is given by Eq. (6.19). It can be seen that the junction capacitance varies
inversely proportional to the thickness l of the space charge region. As we shall see
in the next section, l can be changed by applying an external voltage, so that the
value of the capacitance can be controlled by the applied voltage.

Example 6.2 Consider a p–n junction made of Si, as the one in Example
6.1, having a circular cross section with diameter 200 µm. Calculate: (a) The
thickness of the space charge region; (b) The value of the maximum electric
field at the junction; (c) The capacitance of the junction.

(a) To calculate the thickness, we use Eq. (6.18), with the absolute value of
the electron charge e = 1.6 × 10−19 C and the permissivity of vacuum
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ε0 =8.5×10−12 Fm−1. FromTable 5.2wehave for the dielectric constant
of Si, ε/ε0 = 11.8, and from Example 6.1 we have V 0 = 0.85 eV. Hence

l =
[
2 × 11.8 × 8.85 × 10−12 × 0.85

1.6 × 10−19

(
1

1018 × 106
+ 1

1016 × 106

)]1/2

m.

l ≈
[
2 × 11.8 × 8.85 × 10−12 × 0.85

1.6 × 10−19 × 1022

]1/2

= 3.3 × 10−7 m.

or l = 0.33 µm.
(b) From Eq. (6.16) we have

E0 = 2V0

l
= 2 × 0.85

3.3 × 10−7
= 5.2 × 106 V/m.

(c) To calculate the capacitance we use Eq. (6.20) with the area A = πR2,
where R = 10−4 m is the radius of the circular section. Thus

C = 11.8 × 8.85 × 10−12 × 3.14 × 10−8

3.3 × 10−7
= 9.9 × 10−12 F = 9.9 pF.

6.2 Current in the Biased Junction: I-V Characteristics

When a junction is biased, that is, subjected to a voltage from an external circuit, there
is a change in the equilibrium conditions so that an electric current flows through,
with a direction that depends on the sign of the applied voltage. The essential feature
of the p–n junction is its asymmetry relative to the direction of the applied voltage.
Voltages in opposite directions produce currents with very different intensities. This
can be understood by examining the effect of the external voltage on the potential
barrier.

When an external voltage V is applied at the junction terminals, it appears almost
entirely at the space charge region. This is so because the density of carriers in this
region is much smaller than in the neutral regions of the semiconductor, and therefore
it has much larger resistance. Thus, the external voltage is added to, or subtracted
from, the contact potentialV 0 in equilibrium, depending on its direction, as illustrated
in Fig. 6.5.When the voltage V is applied from side p to side n, in the so-called direct
polarization, or forward bias, it decreases the height of the potential barrier, that
becomes V 0 – V. (Fig. 6.5b). On the other hand, if V is directed from n to p, called
reverse bias, the barrier increases and has a value of V 0 + V (Fig. 6.5c). The result
is that the current flowing through the junction when the voltage is applied in the
forward direction is larger than in the reverse direction, giving the p–n junction an
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Fig. 6.5 Effect of external voltage on the thickness of the space charge region and on the potential
barrier height. a Equilibrium situation. b Direct, or forward, bias. c Reverse bias

asymmetric response to the applied voltage. This is the basis of operation of diodes
and junction transistors.

It is easy to verify that the electric field and the thickness of the space charge
region also vary with the applied voltage. For a forward bias voltage V the potential
difference in the barrier decreases, therefore the field also decreases. As a result, the
thickness of the space charge region decreases and can be calculated with Eq. (6.18)
with V 0 replaced by V 0 − V. On the other hand, when the junction is polarized in the
reverse direction, the barrier height, the electric field, and the thickness of the space
charge region, all increase.

Let us now consider what happens to the various components of the current in the
junction, in order to calculate its I-V characteristics. Let us adopt the convention that
V is positive if applied in the direction of forward bias, and negative in the reverse
direction.When a positive voltage is applied to the terminals of the junction, a current
I enters in the metallic contact on the p-side (Fig. 6.2) and leaves by the contact on
the n-side. In the two neutral regions of the semiconductor junction, the current
is entirely due to drift and dominated by the majority carriers, holes on the p-side
and electrons on the n-side. These carriers move towards the space charge region,
undergo recombination and also go to the other side, where they move by diffusion.
To calculate the value of the current I produced by a voltage V, it is necessary to
understand, in detail, the various components of the currents in all regions of the
junction.

Considerwhat happenswith the holes thatmove in the p-side towards the depletion
region. Upon reaching the region close to the space charge region, many of them
recombine with electrons coming from the n-side. Those that “survive” arrive at the
depletion region, where the density of carriers is much smaller and therefore there is
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little recombination. Upon reaching the border of the depletion region, at the plane x
≈ +ln in Fig. 6.4, the holes are injected into the n-side where they become minority
carriers. In this side the holes diffuse further into the n-regionwhile recombiningwith
electrons, resulting in a variation of the concentration as that obtained in Sect. 5.4.4.
The holes injected into the n-side have a concentration δp in excess of the equilibrium
value pn0 that decays exponentially with x. Since the diffusion length Lp = (Dpτ p)1/2

is of the order of 10−3 to 10−1 cm, it is much larger than the thickness of the space
charge layer, l ∼ 1 µm = 10−4 cm. Thus, the variation of the hole concentration pn
on the n-side of the junction has the shape shown in Fig. 6.6. Electrons on the n-side,
moving in the opposite direction of holes, are injected into the p-side where they are
minority carriers, and have a behavior analogous to the one just described for holes.

Fig. 6.6 Concentrations of minority carriers and currents in the vicinity of the space charge region
in a forward biased p–n junction
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The calculation of the total current that flows through the junction can be done
entirely based on the diffusion currents of minority carriers on both sides. As
described earlier, holes arriving at the junction from the p-side are injected into the
n-side and move by diffusion. Similarly, electrons flowing in the opposite direction
are injected into the p-side where they diffuse. To calculate the two diffusion
currents, we need first to obtain the concentrations of the carriers. For this we use
two coordinate systems, shown in Fig. 6.6. On the n-side the coordinate is
represented by x, with the origin x = 0 at the boundary of the space charge region
(plane at x = + ln in Fig. 6.4). On the p-side the coordinate x’ is in the −x direction,
where x′ = 0 is the plane x = −lp of Fig. 6.4. According to Eq. (6.5), the ratio
between the equilibrium concentrations of holes on the two sides of the junction is

pp0
pn0

= eeV0/kBT . (6.21)

When an external voltage V is applied at the junction, the height of the potential
barrier becomes V 0 − V, so that the difference between the intrinsic Fermi levels on
both sides isEip −Ein = e (V 0 −V ). As shown in Fig. 6.5, this result is consistentwith
the difference between the Fermi levels on sides p and n of �EF = −eV, because
the junction is not in equilibrium. Thus, the ratio between the concentrations of
holes at the boundaries of the spatial charge region on sides p and n, obtained by a
development analogous to the one that led to Eq. 6.2, is given by

pp(x′ = 0)

pn(x = 0)
= ee(V0−V )/kBT . (6.22)

In case the current at the junction is not very high, the concentrations of the
majority carriers almost do not change from the values in equilibrium with the
application of the external voltage. Thus, pp(x′ = 0) ≈ pp0. Substitution of this
result in Eq. (6.22) and division by (6.21) gives

pn(x = 0)

pn0
= eeV /kBT . (6.23)

This result shows that the concentrations of theminority carriers in the boundaries
of the space charge region increase exponentially with the applied voltage, in the case
of forward bias. On the other hand, they decrease exponentially with the voltage in
the case of reverse bias. From Eq. (6.23) it is simple to obtain the diffusion current of
holes on the n side using the results of Sects. 5.4.3 and 5.4.4. The hole concentration
in excess of equilibrium at x = 0, obtained from Eq. (6.23), is

δpn(x = 0) ≡ pn(x = 0) − pn0 = pn0 (eeV /kBT − 1). (6.24)
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The variation of δpn along x, obtained using this result in Eq. (5.84), is

δpn(x) = pn0 (eeV /kBT − 1) e−x/Lp . (6.25)

This variation is shown in Fig. 6.6a. From this result we can obtain the diffusion
current density of holes in the +x direction on the n-side. Using (6.25) in Eq. (5.57)
we have

J diff
p (x) = e

Dp

Lp
pn0 (eeV /kBT − 1) e−x/Lp . (6.26)

Denoting by A the area of the junction cross-section, the intensity of the diffusion
current of holes at x = 0 is then

I diffp (0) = e A
Dp

Lp
pn0 (eeV /kBT − 1). (6.27)

Assuming that the electron–hole recombination in the space charge region is
negligible, the current of holes does not vary in this region, as illustrated in Fig. 6.6c.
A similar development to that of Eqs. (6.21)–(6.27), gives for the diffusion current
of electrons in the space charge region

I diffn (0) = e A
Dn

Ln
np0 (eeV /kBT − 1). (6.28)

In steady state, the total current must be the same in any section of the junction,
and also equal to the current I that flows into and out of the junction through themetal
contacts. Thus, we can obtain I by the sum of the drift currents of electrons and holes
in the space charge region. As one can see in Fig. 6.6, since the total current I does
not vary along x, the electron drift current on the n side and the hole drift current on
the p side are given by the differences between I and the diffusion currents of holes
and electrons, respectively. In this way, we can calculate the total current without
explicitly using the currents of the majority carriers. Adding Eqs. (6.27) and (6.28)
we obtain

I = Is (e
eV /kBT − 1), (6.29)

where

Is = e A

(
Dp

Lp
pn0 + Dn

Ln
np0

)
. (6.30)

Equation (6.29) is called the diode equation. It was first derived by William
Shockley, one of three physicists who received the Physics Nobel Prize in 1954 for
the invention of the transistor. This equation gives the current I in the junction as a
function of the applied voltage V. It is important to draw attention to the fact that in
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the derivation of Eqs. (6.29) and (6.30) it became clear that the current in the p–n
junction is dominated by the minority carriers. Note that for negative voltages
with values much larger than kBT /e (0.026 V at room temperature), the current tends
to −Is. For this reason, Is is called reverse saturation current. Its value can be
calculated with Eq. (6.30) using only the parameters of the semiconductor of the
junction. Considering that at room temperature the impurities are almost completely
ionized, we can use Eqs. (5.38) and (5.41) for the equilibrium concentrations of
carriers. Replacing them in Eq. (6.30) we obtain a more convenient expression for
the saturation current

Is = e A n2i

(
Dp

LpNd
+ Dn

LnNa

)
. (6.31)

Since ni varies exponentially with the energy gap Eg, one can see from Eq. (6.31)
that the saturation current varies considerably from one semiconductor to another.
Clearly, it is also quite sensitive to changes in temperature. Consider a junction made
with germanium, with impurity concentrations of Na = 1018 cm−3 and Nd = 1015

cm−3. A junction like this, with Na 	 Nd , is called p+ − n. In this case, the first term
in Eq. (6.31) completely dominates the second. Considering a junction with area A
= 10−4 cm2, and a recombination time τ p = 0.1 µs, with the values of ni and Dp in
Table 5.2, we obtain with Eq. (6.31)

Is = 2.5 × 10−7A = 0.25µA.

Figure 6.7 shows the I–V curve calculated with Eq. (6.29) with this value of
Is. Figure 6.7b shows an expanded region around the origin. We see that for V =
−0.1 V the current is already practically equal to that of reverse saturation. With
direct bias, V > 0, the current increases exponentially with V. Figure 6.7a, made on
a current scale 105 times larger than in (b), exhibits a more familiar aspect of the I-V
characteristics of the junction. The I-V curve is strongly asymmetric relative to the
sign of the voltage. With reverse bias the current is negligible compared to the one
of direct bias, which is the essential feature of the diode. A striking feature of the
curve in Fig. 6.7a is the abrupt increase of the current that occurs at a voltage around
0.3 V. This feature is simply a result of the exponential growth of I with V. The
critical value of the voltage for which the current grows abruptly depends essentially
on the semiconductor. This can be seen by replacing (6.31) in Eq. (6.29) and using
Eq. (5.23) for ni. Neglecting the unity in the presence of the exponential in Eq. (6.29)
we obtain

I = e A

(
Dp

LpNd
+ Dn

LnNa

)
Nc Nv e

(eV−Eg)/kBT . (6.32)

We see then that the current grows exponentially with the difference between V
and the energy gap in eV. The critical voltage for the abrupt growth of the current is
in the range 0.2–0.4 V for germanium junctions and 0.6–0.8 V for silicon junctions.
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Fig. 6.7 I–V characteristic of an ideal p–n junction calculated with the diode Eq. (6.29) for Is =
0.25 µA, a value adequate for a junction made with germanium. The curve in (b) is the same as in
(a), made on an enlarged scale to show the behavior around the origin

Finally, it should be noted that in real junctions the I–V response deviates from
Eq. (6.29) due to the following factors: The electron–hole recombination in the
space charge region is not completely negligible; the concentrations of the majority
carriers do not remain in equilibrium when the current increases considerably; the
junction is not abrupt, like in the model we considered in this section. These effects
are treated in other more specialized books on semiconductor devices.

6.3 Heterojunctions

A junction formed by two intrinsically different materials is called heterojunction,
in contrast to the one studied in the previous section, which is a homojunction.When
the materials on the two sides of the junction are different, the energy diagram shows
a discontinuity at the interface between them, instead of the continuous behavior
of Fig. 6.3. Usually, heterojunctions are those formed by different semiconductors,
like GaAs and (GaAl)As, used in semiconductor lasers. However, junctions between
metals and semiconductors are also heterojunctions and are used tomanufacture some
devices. Junctions involving metals have some properties and applications similar
to those of p-n junctions, but also have special characteristics that are important in
some devices. This is the case of metal–semiconductor junctions, which are useful in
high frequency devices, andmetal–insulator-semiconductor junctions, used in highly
integrated digital circuits.
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Fig. 6.8 Illustration of the concept of work function in the energy diagrams for two cases: a Isolated
metal. b Isolated semiconductor

The behavior of a material in a heterojunction depends strongly on its work
function W0. As studied in Sect. 2.3, the work function is defined as the energy
needed to “pull out” an electron from thematerial and remove it away from its surface.
Having studied the quantum properties of electrons in metals and semiconductors,
we can now understand better the concept of the work function. In the case of a
metal, since the highest energy electrons are at the Fermi level, it is easy to see that
the work function is given byW0 =E0 −EF , whereE0 is the energy of the electron in
vacuum and away from the material, as shown in Fig. 6.8a. In metals it is customary
to write W0 = eφm, where φm is an electric potential with a value typically in the
range of 2–6 V. In semiconductors, the definition of work function is also W0 = E0

− EF . However, since there are no electrons at the Fermi level,W0 = eφs is not the
minimum energy needed to remove electrons from the semiconductor. The energy
necessary to remove electrons in the conduction band from the material is E0 − Ec

≡ eχ, where eχ is called electronic affinity. Figure 6.8 illustrates schematically
the work functions of an isolated metal and an isolated semiconductor in vacuum.
Note in the figure that E0 is the energy level of an electron in vacuum, and it is the
same whether it has been removed from a metal or a semiconductor. Hence, when
a metal and a semiconductor are separated, their Fermi levels have different relative
positions, because they depend exclusively on their respective work functions eφm

and eφs.
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6.3.1 Metal-Semiconductor Junction

When ametal is placed in direct contact with a semiconductor, charges are transferred
from one side to the other in order to equalize the two Fermi levels, similarly to what
happens in a p–n junction. The direction of motion of the charges then depends on
the relative values of the work functions. The difference to the case of junctions
of two semiconductors is that here holes cannot go from the semiconductor to the
metal, since they are quasi-particles that exist only in semiconductors. This transfer
creates layers of charges on both sides of the junction resulting in a potential barrier,
called Schottky barrier, in honor of physicist Walter Schottky who studied metal–
semiconductor contacts in the 1930s. The shape of the barrier is quite different from
the one in a p–n junction, and it depends on the type of semiconductor, the relative
values of the work functions in the two materials, and on the electronic affinity. The
shapes of the Schottky barrier for two typical cases are shown in Fig. 6.9.

Figure 6.9a corresponds to the junction of a metal with a type n semiconductor
with a smaller work function, that is, with φs < φm. Since eφm is the energy necessary
to pull an electron out of the metal and −eχ is the energy needed to inject it in the
semiconductor, the height of the energy barrier eφB that an electron must overcome
to transfer from the metal to the semiconductor is given by eφB = e(φm − χ ).
Examination of the relative positions of EF and Ec in Figs. 6.8 and 6.9a, shows
that the energy difference between the peak of the barrier and the minimum of
the conduction band Ec is e(φm − φs). This difference characterizes the contact
potential between the metal and the semiconductor in equilibrium, V 0 = φm − φs,
that prevents the transfer of electrons from the semiconductor to the metal. This

Fig. 6.9 Energy diagrams of metal–semiconductor junctions in equilibrium. a Type
n semiconductor with φs < φm. b Type p semiconductor with φs > φm
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potential can be reduced or increased by applying an external voltage with direct or
reverse bias, respectively. For this reason, the metal–semiconductor contact has I-V
characteristics similar to that of a p–n junction.

Figure 6.9b illustrates the Schottky barrier in the case of a type p semiconductor
with φs > φm. In this case, in order to align the Fermi levels, it is necessary to have an
accumulation of positive charges on themetal side and negative on the semiconductor
side. This occurs with the transfer of electrons from the metal to the semiconductor,
where they ionize acceptor impurities in a depletion layer. The charge layers on
both sides produce a potential barrier in equilibrium V 0 = φs − φm that prevents
the continuation of the charge transfer. As in the previous case, this barrier can be
increased or decreased by applying an external voltage.

An important difference between the p–n junction and the metal–semiconductor
junction is that in the first the current is dominated by minority carriers, while in
the second it is determined bymajority carriers. The process by which the majority
carriers produce the current in the forward biased metal–semiconductor junction
involves the emission of electrons from the metal, similar to the thermionic emission
in the hot cathode of a vacuum tube. Its quantitative study can be found in some
references cited at the end of this chapter.

Finally, it is important to note that in the case of a metal-type n semiconductor
contact with φm < φs and a metal-type p semiconductor with φs < φm, the contact
potential is negative and there is no formation of a potential barrier. Contacts of this
type are called ohmic, because their resistances do not depend on the direction of
the current.

6.3.2 Heterojunctions of Semiconductors

In a heterojunction of semiconductors, the different energy gaps of the two sides
produce a discontinuity of the energy bands at the interface. A very important
heterojunction for applications in optoelectronics is the one formed by GaAs and
the alloy Ga1-xAlxAs, also denoted by (GaAl)As. In this alloy a certain fraction x of
Al atoms replaces the Ga atoms randomly in the crystal lattice. Since GaAs and
AlAs crystallize in the same structure (zinc-blende, Fig. 1.8a) and have almost
identical lattice parameters, the substitution of Ga by Al does not produce
distortions in the lattice. The main effect of Al in the GaAs lattice is to increase the
energy gap. As GaAs has Eg = 1.43 eV and AlAs has Eg = 2.16 eV, the gap of
Ga1−xAlxAs depends on the Al concentration x. The gap Eg varies with x in an
approximate linear fashion between the values in the pure crystals.

Also, due to the fact that the lattices are almost identical, it is possible to grow
Ga1−xAlxAs on the surface of a GaAs crystal, producing an almost perfect crystalline
interface. This makes possible tomanufacture heterojunctions in which electrons and
holes pass fromone side to the otherwithoutmuch scattering caused by imperfections
at the interface. The growth of (GaAl)As on GaAs was traditionally done with the
LPE technique, described in Sect. 1.4. Currently, with the MBE technique and other
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Fig. 6.10 Energy diagrams of a heterojunction of n-GaAs and p-(GaAl)As. a Separate materials.
b Junction in equilibrium

methods of film manufacturing, it is possible to deposit individual atomic layers,
one after the other, producing lattices, interfaces, heterojunctions, and almost perfect
superlattices.

Figure 6.10 shows the energy diagrams of n-type GaAs and p-type Ga1−xAlxAs,
with a certain Al concentration x, when the two materials are separate. In this case,
each material is characterized by different electronic work function and affinity,
referred to the vacuum level. When the two materials are brought into contact,
electrons and holes pass from one side to the other. Like in the p-n homojunction in
equilibrium, the Fermi levels on both sides are equal. However, since the values of
Eg are different, in a heterojunction there are discontinuities in the minimum of the
conduction band, Ec, and in the maximum of the valence band, Ev, as illustrated in
Fig. 6.10b. By examining the energy diagrams we see that

�Ec = e (χ1 − χ2), (6.33)

�Ev = Eg2 − Eg1 − �Ec. (6.34)

These discontinuities are the same, regardless of the materials being separate or
in contact, since they depend only on the electronic affinities and on the band gaps.
We see in Eqs. (6.33) and (6.34) that when the values of χ and Eg on the two sides
are equal, �Ec = �Ev = 0. Since the discontinuities exist in the separate materials,
they have nothing to do with the formation of the charge layers in the two sides of the
junction, that create the potential barrier V 0. As discussed in the previous section, in
the p-n homojunctionV 0 is equal to the difference between the energy levelsEc of the
conduction band in the two sides. As we can see in Fig. 6.10b, in the heterojunction
one has to subtract the discontinuity �Ec, so that height of the potential barrier is

V0 = V1 + V2, (6.35)



6.3 Heterojunctions 175

n- Ga1-xAlxAs      n- GaAs      

Ec

Ev

Eg2

Eg
EF

1

Fig. 6.11 Heterojunction of n-GaAs and n- Ga1−xAlxAs

where V 1 and V 2 are shown in Fig. 6.10b. The different energy gaps of the
semiconductors in a heterojunction makes possible to manufacture a huge variety
of potential barrier shapes for electrons in the conduction band and holes in the
valence band. This allows the investigation of quantum properties of particles in
potentials manufactured with ingenious shapes, as well as the fabrication of
sophisticated devices. An important heterojunction for scientific research and for
applications is shown in Fig. 6.11. It is formed by two semiconductors doped with
type n impurities, n-GaAs and n- Ga1−xAlxAs. Due to values of the electronic
affinities of the two materials, the discontinuities in the bands are �Ec = 0.85 �Eg

and �Ev = 0.15 �Eg, where �Eg = Eg2 − Eg1. These discontinuities serve to
block the diffusion of GaAs carriers into (GaAl)As, which is an important
mechanism for the semiconductor lasers that will be studied in Chap. 8.

6.4 The Junction Diode

The diode is a two-terminal electronic device in which the electric current can flow in
only one direction. An ideal diode should have zero resistance for the current in one
direction, like a short circuit, and infinite resistance, as an open circuit, for the current
in the opposite direction. The actual diodes, however, have a small resistance, but not
zero, in one direction, and a large resistance, but not infinite, in the other direction.
Figure 6.12 shows the circuit symbol of the diode and the I-V characteristic of an
ideal diode. The triangular part of the symbol represents the tip of an arrow, indicating
the direction of current flow in the diode. The thermionic diode, which existed before
the semiconductor era, is made of a vacuum tube insidewhich there are two elements,
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(a) (b)

Fig. 6.12 a Circuit symbol of a diode. b I-V characteristic of the ideal diode

cathode and anode. The cathode is heated by a filament and emits electrons, while the
unheated anode only receives electrons from the cathode. When a positive voltage
is applied between the anode and the cathode, electrons emitted by the cathode flow
towards the anode and produce a current. When the voltage is applied in the opposite
direction, the anode cannot emit electrons, because it is not heated, resulting in zero
current. Semiconductor diodes are made with p-n junctions or metal–semiconductor
contacts. While in the vacuum tube diode the asymmetry is due to the fact that
the cathode emits electrons, but the anode does not, in semiconductor diodes the
asymmetry is caused by the potential barrier. The junction diode consists of only one
p–n junction with two metal contacts for the current input and output. On the p-side
the contact between the semiconductor and an aluminum film naturally forms a good
ohmic contact, due to the relative values of the work functions. On the n-side the
ohmic contact is obtained by means of a stronger doping, producing an intermediate
n+ region as in Fig. 6.1. By analogy with the vacuum tube diode, the p terminal is
called anode, while the n terminal is called cathode.

Junction diodes have an I-V characteristic like the one shown in Fig. 6.7. When
they are biased in the forward direction, the current reaches substantial intensities
when the voltage is close to or larger than a critical value E0, which depends on the
junction semiconductor. In Ge diodes this value is the range of 0.2–0.4 V, while in Si
diodes it varies from 0.6 to 0.8 V. Figure 6.13a shows a circuit that is approximately
equivalent to the diode junction. For V < E0 the current in the circuit is zero, since
the presence of the battery causes the voltage at the terminals of the ideal diode to
be negative. For V > E0 the current increases linearly with the difference V − E0,
due to resistor R in series with the diode and the battery.

The equivalent circuit of Fig. 6.13 applies to DC voltages. For alternating voltages
with relatively high frequencies, it is necessary to consider the effect of the junction
capacitance. When the voltage applied to the diode varies rapidly, the charge in the
depletion region does not follow immediately. This limits the frequency response of
the diode. This effect can be represented by a capacitor in parallel with the circuit
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Fig. 6.13 a Approximate equivalent circuit of the junction diode. The battery produces the critical
voltage E0 and the resistor determines the finite slope of the I-V characteristic, shown in (b)

of Fig. 6.13a, with a capacitance that is, in part, given by Eq. (6.20). The time delay
in the diffusion motion of the charges in the vicinity of the junction also contributes
to the capacitance. The relative values of the diffusion capacitance and of the spatial
charge capacitance depend on the geometry and on the material of the junction.

Diodes are important components in electronic circuits because they perform
many functions. Some will be presented in the next section. They are used either
as discrete components or in integrated circuits. Figure 6.14 shows three common
physical aspects of discrete commercial diodes. Each type of diode is identified by an
alphanumeric code (Examples: 1N23 and 1N56. The number 1 before the letter N is
used to identify diodes). The identification of the anode and cathode terminals, aswell
as the I-V characteristic and other diode parameters, are listed in the specifications
of each type of diode.

Fig. 6.14 Common physical aspects of discrete commercial diodes. a Low current. b Intermediate
current. c High current
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Fig. 6.15 I-V curves for p–n junction diodes made of Ge, Si, and GaAs, calculated in Example 6.3

Example 6.3 Calculate the saturation currents and make the I-V plots of three
ideal diodes, at T = 300 K, one made with Ge, one with Si, and one with GaAs,
considering that they all have the following parameters: Na = 1017 cm−3; Nd

= 1015 cm−3; A = 10−4 cm2; τ p = τ n = 0.5 µs.
The saturation current is given byEq. (6.31). SinceNa 	Nd , we can neglect

the second term. Using Lp = (Dpτ p)1/2 we write for Is

Is ≈ e A n2i D
1/2
p

τ
1/2
p Nd

.

Using the diode data and the parameters in Table 5.2 converted to SI units,
we have for the Ge diode.

Is = 1.6 × 10−19 × 10−4 × 10−4 × (2.5 × 1013 × 106)2 × (50 × 10−4)1/2

(0.5 × 10−6)1/2 × 1015 × 106
A

Is = 1.0 × 10−7 A.

For the Si diode we have

Is = 1.6 × 10−19 × 10−4 × 10−4 × (1.5 × 1010 × 106)2 × (12.5 × 10−4)1/2

(0.5 × 10−6)1/2 × 1015 × 106
A

Is = 1.8 × 10−14 A.
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For the GaAs diode comes

Is = 1.6 × 10−19 × 10−4 × 10−4 × (107 × 106)2 × (10 × 10−4)1/2

(0.5 × 10−6)1/2 × 1015 × 106
A

Is = 7.2 × 10−21 A.

The I-V curves for the three diodes are obtained by calculating I as a function
ofV, numerically, with theDiode Eq. (6.29), using the three values for Is above.
The curves, shown in Fig. 6.15, clearly demonstrate the effect of the different
energy gaps on the critical voltages of the diodes.

6.4.1 Applications of Diodes

Diodes have several applications in electronic circuits. One of the most important is
the rectification of alternating voltage in power supply sources, used to produce a
DC voltage for the operation of electronic equipment. Figure 6.16a shows a simple
half-wave rectifier circuit, consisting of a transformer, a diode, and a capacitor. The
transformer has the function of changing the amplitude of the AC voltage of the
utility, usually with rms value of 110 or 220 V, to the value appropriate for the power
supply. Figure 6.16b shows the time variation of the sinusoidal voltage v (t) in the
secondary of the transformer, whose average value is zero, applied at the input of
the rectifier. Considering that the critical diode voltage E0 is much smaller than the

Fig. 6.16 Illustration of the operation of a simple half-wave rectifier circuit. The voltage v (t) in
the secondary of the transformer produces a current i (t) in the diode in series with the load. The
dashed line represents the waveform obtained with the addition of a capacitor to the circuit
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peak value of vi (t), the diode has negligible resistance in positive half-cycles of
vi (t), and very high resistance in negative half-cycles. As a result, the current i (t)
that flows through the diode in series with the load of resistance R, follows vi (t) on
positive half-cycles, but is negligible during negative half-cycles, so that its shape
has the form shown in Fig. 6.16c. The rectified current is unidirectional, and has
a nonzero average, but not it is constant, as desired for a DC source. However, the
simple addition of a capacitor to the circuit in the position shown by the dashed lines,
makes the current approach the DC shape. The capacitor charges during the positive
half-cycles of the diode current and discharges over R in the negative half-cycles, so
that the current takes the approximate form of the dashed line in Fig. 6.16c. Actually,
there is a small ripple in the current, but its amplitude that can be made sufficiently
small by using a capacitor such that the time constant RC of the circuit is much larger
than the period of the AC voltage.

Diodes used in rectifier circuits do not need to have a fast time response, since the
ACvoltage in these circuits has low frequency, typically 50or 60Hz in the distribution
grids. But they need to satisfy two basic requirements: the first is that they must have
maximum current larger than that required by the load. Due to collisions of electrons
and holes with the crystal lattice, the current flow heats the diode, and there is a
limit value above which the junction damages due to overheating. Thus, each diode,
depending on its physical characteristics, supports a maximum current. The other
requirement is that the peak voltage in the negative half-cycle has to be smaller than
the breakdown voltage of the diode in the reverse polarization. The origin of this
breakdown voltage will be presented in Sect. 6.6.

Another application of the diode, based on its rectification property, is as a peak
detector, used in the detection of amplitude-modulated (AM) waves in radio
receivers. In AM radio transmission, the high frequency wave, called a carrier, has
an amplitude that varies according to the low frequency signal (for example, audio)
of the information. A typical AM wave is shown in Fig. 6.17a, in which the high
frequency sinusoidal carrier is modulated by a signal, also sinusoidal, of low
frequency. If the voltage of this AM wave is at the input of a circuit with diode,
capacitor, and load resistance, like the one in Fig. 6.16, without the transformer, the
output voltage in the load has the shape shown in Fig. 6.17b. The half-wave

Fig. 6.17 a Input high frequency sinusoidal wave amplitude modulated by a sinusoidal audio
signal. The line formed by the peak values corresponds to the audio signal. b Output audio signal
produced by the diode peak detector and a capacitor
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rectifier circuit with capacitor cuts the carrier negative half-cycles, producing a
signal that corresponds to the variation in the value of the positive peaks. This
signal is approximately equal to the sinusoidal audio signal that modulates the
amplitude of the carrier wave. The diodes used in peak detectors work with very
small voltages and therefore can have a low maximum current. On the other hand,
unlike diodes for rectifying power sources, they must respond to high frequencies.

The two diode applications presented here involve voltages and currents that vary
continuously in time, or analog waveforms. Diodes also have many applications in
digital circuits, that operate with signals in the form of short pulses. In combination
with resistors, diodes are used as clampers, or limiters, and also in logic circuits, such
as simple AND and OR gates circuits. When used in combination with transistors,
diodes are used in a large variety of circuits for logic operations.

6.5 Schottky Barrier Diode

As mentioned in Sect. 6.3.1, a metal–semiconductor contact with a Schottky barrier
has an I-V characteristic similar to that of the p–n junction and is, therefore, also a
diode. In fact, historically the first semiconductor device ever built was the
metal–semiconductor contact diode. In the early years of electronics, it was used to
manufacture signal detector diodes by pressing a metallic needle onto the surface
of the semiconductor PbS, called galena, found in nature in crystalline form. The
so-called galena radios consisted only of a LC tuning circuit, a galena diode
detector, and a headset, and were used to listen to radio signals and in simple
communication systems. It was also with metal–semiconductor contacts that
Bardeen and Brattain built the first transistor in 1947, which constituted the most
important technological breakthrough of the twentieth century. During the 1950s,
metal–semiconductor contact diodes and transistors, simply called point-contact
diodes, were abandoned due to the difficulty in reproducing its I-V characteristics.
They were then replaced by the p–n junction devices that are among the most used
to date. However, with the improvement of manufacturing technology and the
theoretical understanding of their operation, metal–semiconductor devices became
very important in digital circuit applications.

Although the Schottky barrier diode has an I-V characteristic similar to the
junction diode, there are important differences between the two types of diodes.
They stem fundamentally from the fact that the current in the Schottky barrier is
due to majority carriers, while in p–n junction it is due to minority carriers. When
the voltage at a junction is abruptly switched from direct to reverse polarity,
minority carriers are not removed from the other side instantly due to the
recombination time, as discussed in Sect. 5.4.4. This effect limits the frequency
response of p–n junction diodes. In Schottky barrier diodes there are no minority
carriers to be removed, so that the response time is much shorter. For this reason,
they have wide application in high frequency or fast switching detector circuits.
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Fig. 6.18 Comparison between the I-V characteristics of a Schottky diode (a) and a Si p–n junction
diode (b). Both curves were calculated with Eq. (6.29), using in (a) Is = 2.5 µA and in (b) Is =
1 nA

Another important difference between the Schottky diode and the p–n junction
diode is in the value of the critical voltage E0 of the I-V characteristic. As we saw
in Sect. 6.1, this voltage results from a combination of the saturation current value
Is and the effect of the exponential growth of I with V, given by Eq. (6.29). In a
Schottky diode made with the same semiconductor and with the same area as a p–n
junction diode, the saturation current is much higher in the first, because it is due to
majority carriers. Thus, as shown in Fig. 6.18, Schottky diodes have a critical voltage
much smaller than p–n junction diodes, so that they are closer to an ideal diode in
direct bias.

A final remark. Schottky diodes do not support high currents, because they have
quite small contact area, and thus easily the current density becomes very large
and damages the contact. For this reason, they are not suitable for rectifier circuits.
Their most important application is in detector circuits, which require high frequency
response and high sensitivity, expressed by the large inclination of the I-V curve close
to the origin.

6.6 Breakdown in Reverse Bias: Zener Diode

According to the model presented in Sect. 6.2, in the reverse polarized p–n junction
there is small current with intensity that tends to a saturation value as the reverse
voltage increases. In fact, this only occurs as long as the reverse voltage is smaller,
in absolute value, than a certain value VB, called breakdown voltage. If the voltage
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reaches this critical value, the current increases sharply as a result of a process of
electronic disruption of the junction. Since the external circuit limits the current
intensity by not letting it exceed a maximum value (which depends on the
characteristics of the device), this breakdown process may not be destructive. It is
perfectly reproductive and can be repeated infinitely many times. Two different
mechanisms may be responsible for the breakdown process in a junction, the
so-called Zener effect and the avalanche multiplication. Although the two
mechanisms are different, both result from the effect of the electric field in the
space charge region of the p–n junction on the charge carriers. In reverse biased
junctions, this field increases due to the increase in the height of the potential
barrier, as illustrated in Fig. 6.5c. The breakdown process happens when the field
reaches a critical value.

The Zener effect occurs at relatively small voltages, on the order of a few volts,
in highly doped semiconductor junctions. As can be seen in Eq. (6.18), if the
concentrations of impurities Na and Nd on the two sides of the junction increase,
the depletion layer thickness decreases. With concentrations of the order of
1019–1020 cm−3, for reverse voltages of a few volts the thickness is of the order of
10−5 cm, which results in fields of the order of 106 V/cm. Electric fields with this
intensity break the covalent bonds and ionize atoms of the crystal lattice. The
electrons released during ionization are accelerated in the opposite direction to the
field, passing to the n-side of the junction and producing a current in the reverse
direction, much higher than the reverse saturation current.

In junctionswith lowconcentrations of impurities, the electric field in the depletion
region may not be sufficient to produce direct ionization of the semiconductor atoms,
therefore, there is noZener effect. However, therewill always be a value of the reverse
voltage for which there is a breakdown in the junction through another mechanism,
the avalanche. As the name suggests, this is a process in which successive events
occur, resulting in a multiplication in the number of carriers. The first event results
from the acceleration by the electric field of an electron that enters the junction
from the p-side. If the electron has enough energy, its collision with the atoms of
the crystalline lattice can produce an electron–hole pair, resulting in a multiplication
factor of two in the number of carriers. Then, the electron created is accelerated to
the n-side, while the hole is accelerated to the p-side. If the reverse voltage is high
enough, each of them will produce an electron–hole pair, which in turn will produce
other pairs, in a chain reaction process. The value of the reverse voltage for which
this avalanche produces a sudden growth in the reverse current is called breakdown
voltage VB. The value of VB can vary from a few volts to a few thousand volts.

Regardless of themechanism responsible for the breakdown at the junction, Zener
or avalanche, the complete I-V characteristic of the diode has the shape shown in
Fig. 6.19a. In the reverse bias, the diode has a large resistance, and the current
intensity is small with a value close to Is, as long as the voltage is less than VB.
For values of the voltage near VB, any variation in V produces large variations in
the reverse current caused by the junction breakdown. Diodes that are manufactured
to operate in the breakdown region are called Zener diodes. Despite the name, in
general the breakdown mechanism of the Zener diodes is the avalanche process.
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Fig. 6.19 a I-V characteristic of the junction diode, showing the sudden increase in reverse current
at the breakdown voltage −VB. b Circuit symbol of the Zener diode

Zener diodes have circuit symbol shown in Fig. 6.19b, and can be manufactured to
have VB ranging from 1 V to hundreds of volts. In good quality Zener diodes, the
breakdown current is represented by an almost vertical line, which means that the
voltage at the terminals is kept constant and equal to −VB, regardless of the current
value.

A very important application of Zener diodes is as a voltage regulator in power
supply sources. Figure 6.20 shows a typical simple circuit consisting only of a resistor
and a Zener diode connected to an AC rectifier. The input voltage has a small ripple,
say around an average value of 12 V, and with the waveform of Fig. 6.16c. The
presence of a Zener diode, say with VB = 9 V, clamps the output voltage at 9 V,
regardless of the variation of the input. The difference between the input voltage
and the output voltage is applied in the resistor, whose role is to “absorb” the input
fluctuations.

Fig. 6.20 Illustration of the use of a Zener diode in a voltage regulator. a Variable voltage at the
input. b Simple circuit. c Constant voltage at the regulator output
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6.7 Other Types of Diodes

6.7.1 Varactor

Equations (6.18) and (6.20) show that the p–n junction diode has a capacitance that
varies with the voltage of the potential barrier. Considering that in the reverse bias
with a voltage V the height of the potential barrier is V + V 0, and assuming that V
	 V 0, Eq. (6.18) gives for the thickness of the depletion region (Problem 6.4)

l ∝ V 1/2. (6.36)

A consequence of this result and of Eq. (6.20) is that the capacitance of the junction
varies with the reverse voltage as

C ∝ V−1/2. (6.37)

Thus, a diode with a very small saturation current, subjected to a reverse bias
voltage, behaves like a capacitor whose capacitance is controlled by the voltage. This
is called varactor, a term formed by joining parts of the words variable reactor, also
known as varicap (of variable capacitor), or VVC (voltage-variable capacitance).
The dependence of the capacitance with the voltage given by Eq. (6.37) is only
valid for an abrupt junction, such as the one in Fig. 6.2. If the variation in the
impurity concentrations in the junction is gradual, the dependence of C with V will
be different. Using techniques of epitaxial growth or ionic implantation, it is possible
to manufacture junctions with different profiles of concentrations, chosen in order
to obtain C (V ) functions suitable for specific varactor applications. Varactors, or
varicaps, are used in the LC tuning circuits of radio and TV receivers, in place
of the old manually variable plate capacitors. The fact that its capacitance can be
controlled by the voltage allows the electronic control the tuning frequency of the
receiver circuits. For this application, one uses varactors with a capacitance that
varies as C ∝ V−2. In this case, the tuning frequency of the circuit, ω = (LC)−1/2,
is proportional to the voltage applied to the diode. Varactors are also used in active
filters, harmonic generators and in microwave circuits.

6.7.2 Tunnel Diode

The tunnel diode is made with a p–n junction in which, in a certain range of direct
bias voltage, the current is dominated by the tunneling of electrons through the
potential barrier at the junction. As shown in Sect. 3.3.3, there is a finite probability
for an electron to cross a barrier with a maximum potential larger than its kinetic
energy. This is the tunnel effect, that is of entirely quantum nature.
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Aswe saw in Sect. 6.2, the current in a common p–n junction is due to the diffusion
motion of minority carriers in both directions. This results in a current that decreases
exponentially with the applied voltage, and tends to zero as V → 0. The tunnel diode
is made with semiconductors heavily doped on both sides of the junction, favoring
the tunneling of electrons from the n-side to the p-side, producing a tunnel current
larger than the diffusion current when V is small. For this to happen it is essential,
as we shall see below, that the two sides of the junction are heavily doped.

The energy level diagram presented in Sect. 5.3 is valid when the concentration
of impurities is relatively small, N � 1020 cm−3. In this situation, the impurities
are very far from each other, so that the interaction between them is negligible.
When the concentration of impurities is on the order of 1020 cm−3 or larger, the
interaction between them is no longer negligible. In this case, a phenomenon like the
one illustrated in Fig. 4.1 occurs, the impurity energy levels are no longer discrete,
they form bands. If the impurities are donors, they form an energy band that overlaps
with the conduction, such that the Fermi level is above of the minimum of the
conduction band, EF > Ec. As a result, states with energy above Ec and below EF are
filled with electrons, even at T = 0. Semiconductors in this situation are called n-type
degenerate. Analogously, a semiconductor heavily doped with p-type impurities has
EF < Ev, so that the states between EF and Ev are occupied with holes.

The tunnel diode is made of a p–n junction in a semiconductor strongly doped on
both sides, that is, with degenerate p and n regions, that has an energy diagram as
shown in Fig. 6.21. In the equilibrium condition, with external voltage V = 0, the
Fermi level EF is the same in two sides of the junction. As EF > Ev on the p-side and
EF < Ec on the n-side, there are filled states in the conduction band on the n-side with
energy close to that of empty states in the valence band on the p-side. These states
are separated spatially by the thickness of the depletion region which, due to the high
impurity concentration is quite narrow (see Eq. 6.18). As we saw in the Sect. 3.3.3,
filled states separated from empty states by a narrow potential barrier and with finite
height, create the conditions favorable for the tunneling of electrons. When V = 0,
as we see in Fig. 6.21a, there are no filled and empty states with exactly the same

Fig. 6.21 Energy diagrams of a p–n junction in a tunnel diode. a V = 0, junction in equilibrium.
b V < 0, tunneling current in the reverse direction. c V > 0, tunneling current in the forward direction
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energy. In this situation there is no electron tunneling. However, if the voltage is
nonzero, both in the cases of reverse or direct bias, there are states filled on one side
with the same energy as empty states on the other side, because the Fermi levels
on the two sides are different, resulting in tunneling. If V < 0 there is tunneling of
electrons from the p-side to the n-side, as shown in Fig. 6.21b, resulting in reverse
current. On the other hand, if V > 0, we see in Fig. 6.21c that the tunneling is in
direction from n to p, producing a direct current.

With direct polarization, V > 0, initially the current increases with the voltage,
because the number of empty states at the same level as filled states increases with
V. However, with the progressive increase in V, above a certain value of V the
conduction band on the n-side is above the valence band on the p-side, reducing the
tunneling current. In this way, when a direct bias voltage is applied to the diode,
the tunneling current initially increases with V, goes through a maximum and then
decreases, resulting in a characteristic I-V as shown in Fig. 6.22a. Since the diffusion
current increases monotonically with V, the sum of diffusion and tunneling currents
results in the I-V characteristic for the tunnel diode that has the curious shape shown
in Fig. 6.22b.

An important feature of the I-V curve of the tunnel diode is that in certain voltage
range dI/dV < 0. This corresponds to a negative resistance for AC signals, whose
value can be controlled by the voltage V applied to the diode. When operating in this
region of negative resistance, the tunnel diode supplies AC power to the circuit, as
opposed to a normal resistance that always absorbs energy. Thus, it finds applications
in oscillators and signal amplifiers. As the tunneling mechanism does not present a
delay due to the drift and diffusion processes, the tunnel diode also has applications
in fast switching circuits.

Fig. 6.22 Tunnel diode I-V characteristic. a Only the tunneling component of the current.
b Complete I-V characteristic including the diffusion current
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6.7.3 IMPATT Diode

The name IMPATT is made with the letters of the words IMPact Avalanche Transit
Time. The IMPATT diode operates with reverse voltage, close to the value for
avalanche, having a structure such as to create a field profile that drives an electron
packet to travel from one end to the other of the device, producing a high oscillation
frequency. The structure of the IMPATT diode is shown in Fig. 6.23a. It consists of
a p+-n junction, in which the n region is long and terminated by a narrow n+ region
with stronger doping. When the diode is reversed polarized, the variation of the
potential has the shape shown in Fig. 6.23b. The electric potential has a large
variation in the region of the reverse polarized junction, resulting in a peak of the
electric field, shown in Fig. 6.23c. In region n the potential varies monotonically,
corresponding to an approximately uniform field. The n+ region has a lower
resistivity, resulting in a smaller potential drop and therefore smaller electric field.
The IMPATT diode normally operates with an external resonant circuit, in an
oscillation regime, so that the variations of the field and the potential of Fig. 6.23
correspond to the average values of those quantities. In the following paragraph we
describe qualitatively the mechanism that produces the oscillation on the diode.

When an external voltage is applied to the diode, an electric field is quickly
created with variation as shown in Fig. 6.23c, where Eav is the field value required
to produce avalanche in the p+-n junction. When the field reaches the value Eav at

−Ex

−Eav

−Ed

Fig. 6.23 a Structure of the IMPATT diode. b Variation of the average potential along the
semiconductor with the reverse polarized diode. c Variation of the average value of the electric
field
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the junction, an avalanche produces a large number of electron–hole pairs. The holes
created during the avalanche move in the −x direction in the p+ region and reach
the metallic contact, where they recombine with electrons from the external current.
On the other hand, the electrons created in the avalanche form a packet that travels
through the n-region in a drift motion under the action of the electric field of value
Ed . As soon as the electron packet leaves the junction region and enters in n region,
it produces a potential drop around itself, which causes a decrease in the electric
field at the junction. This makes the field fall below of the value Eav, interrupting the
avalanche process. The electron packet transits in region n for a certain time, until
it reaches region n+ and passes to the external circuit. When the packet leaves the n
region, the electric field at the junction increases again, reaches the value Eav causing
a new avalanche and restarting the process. If the IMPATT diode is connected to a LC
circuit, or a resonant microwave cavity, whose oscillation period is twice the transit
time of the electron packet, the oscillation remains indefinitely. During each half
cycle of the oscillation, a packet of electrons produces current in the same direction
as the half cycle, supplying energy to the circuit and compensating for the losses.
IMPATT diodes are used as microwave generators and can produce tens of watts.

6.7.4 Gunn Diode

Another device used as a microwave oscillator is the Gunn diode, invented by J. B.
Gunn in 1963. This device is called a diode because it has two terminals. However,
unlike all diodes presented previously, instead of being formed by a p–n junction, it is
made of only a uniformly doped sample of n-GaAs. The oscillationmechanism of the
Gunn diode is based on the negative resistance it presents in a certain voltage range,
similar to that of the tunnel diode. However, here the negative resistance results from
an intrinsic property of GaAs.

Figure 6.24a shows part of the energy bands of GaAs, obtained from the complete
band structure in Fig. 5.2. In the semiconductor doped with type n impurities, in
equilibrium electrons occupy states close to the minimum of the conduction band at
point �1, having effective mass m∗

1 = 0.068m0 (Table 5.1). When a small electric
field E is applied to a n-GaAs sample, electrons with momentum around the point
�1 move in the material, with drift velocity proportional to the field. This produces
a current density J proportional to E, as in Eq. 5.52, so that the material has a linear
J − E curve, as in the initial part of the curve in Fig. 6.24b. When the electric
field increases and reaches a certain critical value Ecr ~ 3 × 105 V/m, electrons gain
enough energy to go to the minimum of the conduction band at point X1, with energy
higher by �E = 0.36 eV. Note that since �E 	 kBT, the transition to the minimum
of X1 does not occur by thermal excitation, and this is an essential condition for the
operation of the device. Since the effective mass at point X1 is quite larger than at �1,
due to the smaller curvature of E(k) at X1 (Eq. 5.3), the conductivity of the material
given by Eq. (5.46) decreases. The negative differential resistance range of Fig. 6.24b
corresponds to field values for which a fraction of the electrons in the conduction
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Fig. 6.24 Properties of n-GaAs. a Detail of the conduction band showing two minima that can be
occupied by electrons. In the minimum at point �1, electrons have effective mass m∗

1 = 0.068m0,
where m0 is the free electron mass. In the minimum at point X1, the effective mass is m∗

2 = 1.2m0.
b Current density–electric field characteristic of the material

band is around point �1, and a fraction is at point X1. With the progressive increase
in E, almost all electrons pass to X1 and the characteristic J-E is linear, but with a
slope much smaller than the initial one.

There are several mechanisms by which the oscillation can occur in the Gunn
diode.Wewill consider here only the dipole layer mode, or domainmode, that occurs
in relatively long samples. Figure 6.25a illustrates a sample of n-GaAs submitted to an
external potential difference between the negative and positive terminals, respectively
cathode and anode. The sample has electrons in the conduction band, whose negative
charges are compensated by the positive charges of the ionized donor impurities fixed
in the crystal. When the external voltage is applied, electrons injected through the
metallic contact of the cathode create a layer of negative charge, which together with
the impurities forms a layer of electric dipoles, or a domain. The dipole layer causes
a sharp variation in the potential around it, and consequently a peak in the electric

Fig. 6.25 Operation of the Gunn diode. a Illustration of the sample of n-GaAs with a dipole layer
traveling from the cathode to the anode. b Variation of the electric potential in the sample
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field. The field gradient exerts a force on the dipole layer, which moves towards the
anode. Figure 6.25a shows a domain traveling from the cathode to the anode, while
Fig. 6.25b illustrates the variation along the sample of the resulting potential. When
the domain reaches the anode, a current pulse is produced in the external circuit.
If the voltage applied to the diode has an appropriate value, the electric field in the
domain will be in the region of negative resistance, resulting in energy supply to
the external circuit. If this is a LC circuit, or a resonant cavity, the energy pulse
tends to maintain the oscillation, as long as the transit time of the dipole domain is
approximately equal to half the period of the oscillation. After its extinction in the
anode, another domain forms in the cathode and the cycle is repeated. Gunn diodes
are widely used as microwave oscillators. They operate with voltages in the range
of 5–20 V, which represents an advantage over IMPATT diodes, which normally
require tens of volts. Since the speed of the domain motion increases with increasing
applied voltage, the oscillation frequency increases with the voltage. For this reason,
the Gunn diode oscillation is easily modulated in frequency, by the superposition of
a time-varying signal to the bias voltage.

Problems

6.1 A p–n junction made with Ge has impurities on each side with concentrations
Nd = 1016 cm−3 and Na = 1018 cm−3.

(a) Calculate the positions of the Fermi level on each side at T = 300 K,
relative to the conduction and valence bands. .

(b) Draw the energy diagram of the junction in equilibrium, indicating
the values of the relevant energies, and from it determine the contact
potential V 0

6.2 Calculate the maximum electric field, the thickness of the depletion region
(in µm), and the capacitance of the p–n junction of problem 6.1, considering
that it has a circular cross-section of diameter 300 µm.

6.3 In the equilibrium situation of a p–n junction, the diffusion current created
by the concentration gradient cancels the drift current due to the potential
gradient, both for electrons and holes. This equilibrium condition is expressed
byEq. (5.70) for holes.Calculate the integral of this equation in one dimension
and using the Einstein relation obtain Eq. (6.3) for the contact potential.

6.4 A voltage V is applied to polarize an abrupt p–n junction. Considering that
for not very high V the condition of equilibrium Eq. (5.70) is not changed
much, demonstrate Eq. (6.22) and show that the thickness of the depletion
region is given by an equation equal to (6.18), with V 0 replaced by V 0 − V.

6.5 Use the result of Problem 6.4 and the expression of the charge in a p–n
junction to show that the junction capacitance is given by Eq. (6.20).

6.6 Show that the electron diffusion current in the depletion region of a p–n
junction is given by Eq. (6.28).

6.7 Consider two abrupt p-n junctions made with different semiconductors, one
with Si and one with Ge. Both have the same concentrations of impurities,
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Na = 1018 cm−3 and Nd = 1016 cm−3, and the same circular cross section of
diameter 300 µm. Suppose also that the recombination times are the same,
τ p = τ n = 1 µs.

(a) Calculate the saturation currents of the two junctions at T = 300 K.
(b) Make I-V plots for the two junctions, preferably with a computer, with

V varying in the range −1 to +1 V and I limited to 100 mA.

6.8 The breakdown electric field of the Si junction of Problem 6.7 is 106 V/cm.
Calculate the breakdown voltage of the junction.

6.9 A p+-n junction has concentration of impurities on the n-side that is negligible
compared to the one on the p-side, such that ln 	 lp. Consider a junction of
this type with ln much smaller than the diffusion length Lp of holes on the
n-side. Show that in this directly polarized junction, the electron current is
negligible compared to that of holes and that the field on the n-side, outside
the depletion region, is given approximately per

E(x) = kBT

e

1

ln

pn(0)

Nd + pn(x)

where x is measured from the boundary of the depletion region.
6.10 A p-n junction diode made with Si directly polarized with a constant current

is used as a thermometer. At T = 27 °C the voltage at diode is 700 mV.

(a) Calculate the temperature coefficient of the diode in this temperature,
that is, the ratio V /T.

(b) What will be the variation in the voltage if the temperature rises to
80 °C? Calculate this variation exactly and compare with the value
obtained assuming that it is linear and characterized by the coefficient
obtained in item a).

6.11 A p+-n junction of Si with a cross section area of 10−2 cm2 has impurity
concentrations Na = 1017 cm−3 and Nd = 1015 cm−3. The parameters of Si
are given in Table 5.2. Calculate:

(a) The maximum electric field;
(b) The thickness of the depletion region (in µm);
(c) The junction capacitance in the equilibrium situation and also when an

external voltage of 0.4 V is applied in the forward direction.

6.12 Equation (6.25) for the concentration of holes on the n-side of a p–n junction
is valid for both forward and reverse bias. The same occurs with the analogous
equation for the electron concentration on the p-side. For a reverse polarized
p–n junction with a voltage much larger than 25 mV:

(a) Give the appropriate expressions and make a qualitative plot for the
concentrations of minority carriers, np (x′) and pn (x), as functions
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of the parameters of the junction and of x and x′, measured from the
boundaries of the depletion region.

(b) Calculate the variations with x and x′ of the minority carriers currents
and make the corresponding plots.

(c) From the results of item (b), calculate the total current at the junction
and explain why the majority carriers currents are not necessary for the
calculation.

6.13 Consider an abrupt p+-n junction of Ge, with impurity concentrations Na =
5 × 1016 cm−3 and Nd = 1015 cm−3 with cross section area 10−3 cm2 and
recombination times τ n = τ p = 2 µs. The junction is forward biased with a
current of 100 mA.

(a) Calculate the voltage at the junction.
(b) Calculate numerically the concentrations of the minority carriers np(x)

and pn(x′), and plot their variations with x and x′, measured from the
boundaries of the depletion region.

(c) Calculate numerically the concentrations of the majority carriers nn (x)
and pp (x′), andmake plots showing their variations with x and x′. (They
can be calculated using the fact that the charge neutrality outside the
depletion region requires that the excess concentrations of electrons
and holes in equilibrium are equal at each point, δp (x) = δn (x).

6.14 A diode made with a Si junction, like the one in Problem 6.7, is placed in
the circuit of the figure below. The battery has electromotive force 1.5 V and
internal resistance 0.2 V and the resistor has resistance of 20 �.

(a) Using the diode equation, calculate analytically the current and the
voltage in the diode.

(b) Using the I-V curve obtained in Problem 6.7, graphically calculate
the current and the voltage in the diode and compare with the values
obtained in item (a).
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Chapter 7
Transistors and Other
Semiconductor-Based Devices

This chapter is mostly devoted to the semiconductor device that revolutionized the
electronic industry and changed our way of life, the transistor. Initially we treat in
detail the bipolar transistor, made of two p-n junctions, that for a few decades was the
most important device in analog and digital electronic equipment. Then we present
field-effect transistors, including the MOSFET, that today is the building block
of large-scale integrated circuits used in all digital equipment, such as computers,
tablets, and smart phones. Integrated circuits are presented qualitatively at the end
of the chapter. We also describe thyristors, that are important power control devices.

7.1 The Transistor

The transistor is a three-terminal device, used to control electric signals. A variable
signal applied to the two input terminals electronically controls the signal at the two
output terminals, one of which is common with the input. The two most common
control functions are amplification and switching. When used for amplification, the
device provides a signal with the same form of time-variation as the input signal,
but with larger amplitude. This is illustrated Fig. 7.1 for a sinusoidal variation. The
power of the output signal is generally larger than that of the input signal, with the
increase in power provided by the DC power supply. In digital applications, a digital
signal at the input causes the transistor to switch between two states, one with current
and one without current, representing bits 1 and 0. Due to its ability to convert energy
from a DC source into energy of a controlled signal, the transistor is called an active
device.

The invention of the transistor represented one of themost important technological
advances of the twentieth century, because it was decisive for the enormous evolution
of electronics. Until the mid-1950s, the most widely used electronic control device
was the triode tube. The triode is formed by a vacuum tube containing a heated
cathode that emits electrons and an anode that receives them, butwith a third electrode
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Fig. 7.1 Input and output signals in an amplification device, such as a transistor

made of awiremesh, called grid.A variable voltage applied between grid and cathode
controls the flow of electrons from the cathode to the anode passing through the grid.
In this way, a voltage signal between the grid and the cathode controls the output
current at the anode, making the triode tube an active control device. After the
1950s, vacuum tubes in electronic equipment gradually gave way to semiconductor
transistors and diodes, called solid state devices.

The development of the transistor resulted from basic investigations of the
properties of semiconductors. In 1947 Walter Brattain and John Bardeen were
studying surface properties of germanium with metal rectifier contacts at the Bell
TelephoneLaboratories. In their studies they observed that the current in the semicon-
ductor diode varied when another current passed through a second metallic contact
placed next to the first. In December of that year they announced the discovery of
the new amplification device, named by them as transistor, meaning an element
of variable transconductance. Despite its large potential, the point contact transistor
had many problems: it was very fragile; the contact degraded with the air humidity;
its internal noise was very large. The next step in the development of the transistor
took place in 1948, when William Shockley, also from Bell Laboratories, published
a theoretical work proposing the structure of the junction transistor. From then on,
many industrial laboratories invested in the study and manufacturing techniques of
junction transistors, andwithin a few years they became commercial devices. In 1956
the Physics Nobel Prize was awarded to Shockley, Bardeen, and Brattain, for their
seminal contribution to physics and electronics.

Currently there are twomain types of transistors: the bipolar junction transistor,
usually called simply a junction transistor, and thefield-effect transistor. The bipolar
junction transistor ismade of two p-n junctions fabricated on the same semiconductor
wafer, in which the current in the first junction controls the injection of minority
carriers in the second junction. Since minority carriers can be both electrons and
holes, this transistor operates with positive and negative charge carriers, hence the
name bipolar. The field effect transistor can be made by two junctions, or by metal–
oxide–semiconductor contacts. In both types, the input voltage controls the flow of
majority carriers that pass from the input to the output of the device. These carriers can
be either electrons or holes, depending on the type of impurity of the semiconductor,
so that the field-effect transistor is a unipolar device. In the next section we shall



7.1 The Transistor 197

present the principles of operation and the modeling of bipolar junction transistors.
Field-effect transistors will be studied in Sect. 7.5.

7.2 The Bipolar Transistor

The bipolar junction transistorwas themost important semiconductor device until the
1990 decade. With the dissemination of digital electronics, the field-effect transistor
became the most used semiconductor device. With the planar technology, described
in Sect. 6.1.1, the junction transistor can be made isolated from other devices in the
same semiconductor wafer. Thus, it can be manufactured alone, to become a single
device with three terminals, or in conjunction with many other diodes, transistors,
and passive components, forming an integrated circuit. Its basic structure is shown
in Fig. 7.2. It consists of three layers with different dopings, made in the same
semiconductor, forming two p-n junctions with opposite polarities. The three layers
are called emitter, base, and collector, which are connected to the external circuit
through metallic contacts to which conducting wires are welded. The structure of
Fig. 7.2 is that of a p-n-p transistor. If the dopings p and n are exchanged, a n-p-n
transistor is obtained. The operations of the two types are entirely analogous, with
the roles of electrons and holes interchanged.

Figure 7.3 shows the schematic representation of a p-n-p transistor with a simple
external circuit for biasing its junctions. We represent by IE , IB, and IC , respectively,
the emitter, base and collector currents, that are considered positive when they have
the directions indicated in the figure. The p–n junction between the emitter and the
base is called simply the emitter junction, while the one with the base–collector
is called the collector junction. VEB and VCB represent the voltages at the emitter
and collector junctions, respectively. The circuit configuration in Fig. 7.3 is called
common base, since the base terminal is common between the two input and the
two output terminals of the device. Although this is not the most widely way to

Fig. 7.2 Planar structure of the bipolar junction transistor with some typical dimensions in discrete
devices. The letters E,B, andC represent the terminals of the emitter, base, and collector, respectively
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Fig. 7.3 Schematic
representation of a
p-n-p transistor with a simple
common base polarization
circuit

polarize transistors in practical circuits, it is the most convenient for understanding
the operation mechanisms of the transistor.

In the normal operation of the bipolar transistor, the emitter junction is polarized
in the forward direction, while the collector junction is reversed polarized. Thus, the
resistance of the emitter junction is small and the current IE is relatively high. In
the p-n-p transistor, far from the junction, this current consists essentially of holes,
which are the majority carriers in the emitter and collector regions (component 1 in
Fig. 7.4). At the emitter junction, holes in the emitter region are injected into the base,
where they move by diffusion, contributing to part of the emitter current, denoted by
IEp. On the other hand, electrons go from the base to the emitter and contribute to
another part of the current, IEn, illustrated in Fig. 7.4 (component 7). As we saw in
Eqs. (6.29)–(6.31), it is possible to have IEp � IEn if the concentration of impurities
is much larger in side p than in side n. If the base thickness were large, the collector
junction would be isolated from the emitter junction and the system would behave as
two diodes in series with opposite directions. In this case the collector current would

Fig. 7.4 Illustration of the flow of electrons and holes in a p-n-p transistor: 1-Holes in drift motion
in the emitter; 2-Holes that reach the collector by diffusion; 3-Holes that disappear in the base
due to recombination; 4 and 5-Holes and electrons thermally generated and that form the reverse
saturation current of the collector junction; 6-Electrons that recombine with holes in component 3;
7-Electrons injected from the base into the emitter forming the current IEn
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be very small, given by the reverse saturation value Is of Eq. (6.30) and, therefore,
independent of the emitter current.

However, the base thickness is relatively small, less than the diffusion length
Lp of holes in the base. Thus, even though they are minority carriers, the holes
injected in the base do not have time to completely recombine with electrons, and
most of them reach the depletion region of the collector junction, where they are
accelerated by the electric field to the other side of the junction. As they reach the
p-type collector, the holes are againmajority carriers and acquire a drift motion under
the action of the external field, forming most of the collector current IC (component
2 of Fig. 7.4). Thus, the collector current is mainly due to the holes injected from
the emitter, that is much larger than the reverse saturation current of the collector
junction (components 4 and 5 of Fig. 7.4). The sum of components 2 and 4 forms the
contribution of the holes to the collector current, which is denoted by ICp, while the
contribution of the electrons, represented by the component 5 in Fig. 7.4, is denoted
by ICn.

To conclude the qualitative explanation of the transistor operation, it is necessary
to look closely to the important role of the base current IB. As we saw before, a
large fraction of the emitter current IE passes to the collector because the thickness
of the base is very small. This results in a collector current with a value close to,
but smaller than the emitter current. Using the charge conservation equation, IE =
IB + IC , we see that with IC a little smaller that IE the base current IB is small but
nonzero. In fact, IB results from the flow of electrons from the external circuit to
the base through the contact B, and consists of three distinct contributions: the first
corresponds to the electrons that recombine with part of the holes injected in the base
from the emitter (component 6 in Fig. 7.4). This contribution can be minimized by
making the base thickness much less than Lp; the second, denoted by IEn, is due to
electrons that pass from the base to the emitter (component 7 in Fig. 7.4); from these
contributions we have to subtract a third one, ICn, produced by the flow of electrons
generated thermally in the collector and passing to the base through the collector
junction (component 5 in Fig. 7.4).

As we shall see later, the basic condition for the transistor to be an amplifier is to
have a small base current, typically IB ∼10−2 IE .Due to theproportionalitybetween
the currents, a small variation in the base current results in a large variation in
the emitter current and, therefore, also in the collector current. Thus, in a good
transistor it is necessary tominimize IB. This is achieved bymaking the base thickness
small, such as to decrease the electron–hole recombination, and with a much lower
doping than the emitter, in order to reduce IEn. However, since the base thickness
cannot be too small, due to the physical limitations, the recombination mechanism
is still significant. This fact establishes a minimum limit for IB. In the next section,
we shall present the derivation of the various components of the currents based on
microscopic mechanisms. To conclude this section, let us define some relationships
between the currents IE , IB, and IC , that are used to characterize important transistor
parameters.

As we saw earlier, the collector current consists essentially of holes injected by
the emitter that do not disappear in the base by recombination with electrons. In



200 7 Transistors and Other Semiconductor-Based Devices

the linear region of the transistor operation, this current is proportional to the IEp
component of the emitter current. Thus, we have

IC = B IEp, (7.1)

where B is called the base transport factor, which represents the fraction of holes
injected by the emitter that can reach the collector. On a p+-n-p transistor with a very
narrow base, B < 1. On the other hand, the IEp component of the current is slightly
smaller and also proportional to the emitter current IE , so we define

IEp = γ IE , (7.2)

where γ < 1 is called the emitter injection efficiency. If the reverse saturation current
ICn at the collector junction is negligible, we can consider IC = ICp + ICn ≈ ICp.
In this case, with the relations (7.1) and (7.2) we can express the collector current in
terms of the emitter current as

IC = γ B IE ≡ α IE , (7.3)

where α ≡ γ B is the current transfer factor, which is also smaller than 1. From
(7.3) and the current continuity equation it is possible obtain the relation between
the base and collector currents. Using (7.3) in IB = IE − IC we have

IB = IC
α

− IC = 1 − α

α
IC ,

or else

IC = β IB, (7.4)

where

β = α

1 − α
, (7.5)

is the amplification factor or current gain. This factor is a characteristic parameter
of each transistor, but it also varies with the polarization voltages at the junctions. In a
good transistor, α is smaller but close to 1, so that the factor β is large. Equation (7.4)
expresses the basic characteristic of transistors in the linear regime. It shows that by
means of a small variation in the base current, it is it is possible to control the
variation in the much larger current that flows from the emitter to the collector. The
physical explanation of the proportionality between the base and collector currents
is the following. The collector current IC is basically formed by the holes injected
into the base by the emitter current, and that reach the collector because they do not
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have enough time to recombine with electrons in the base, since this it is very narrow
(thickness much smaller than the hole diffusion length). Therefore, IC increases as
the emitter current IE increases. The difference between IE and IC is the base current
IB, which is formed mainly by electrons that recombine with the holes injected by
the emitter and that do not reach the collector. So, if the base current IB varies, the
number of electrons available for recombination varies, which forces IC to vary as
well, otherwise there would be an accumulation of charges at the base. In this way,
a variation in IB results in a variation in IC and IE . In a certain range of variation,
the relationship between IB and IC is linear, as expressed in Eq. (7.4). In the next
section we will obtain the expressions that relate the parameters B, γ , α, and β, with
the microscopic quantities of the semiconductor that make up the transistor.

Example 7.1 A p-n-p transistor in the steady-state regime has the following
components of the emitter and collector currents: IEp = 10 mA, IEn = 0.1 mA,
ICp = 9.98 mA, and ICn = 0.001 mA. Calculate the transistor parameters B, γ ,
α, and β, and the base current.

The base transport factor B is given by (7.1)

B = ICp

IEp
= 9.98

10
= 0.998.

The injection efficiency of the emitter is given by (7.2), where IE = IEp +
IEn. So

γ = IEp
IEp + IEn

= 10

10 + 0.1
= 0.99.

The current transfer factor α = γ B is then

α = 0.99 × 0.998 = 0.988.

Neglecting ICn in the presence of ICp, the current gain is calculated with
Eq. (7.5),

β = α

1 − α
= 0.988

1 − 0.988
= 82.33,

The base current can be calculated exactly by the difference between the
emitter and collector currents,

IB = IE − IC = (
IEp + IEn

) − (
ICp + ICn

) = 10.1−9.981 = 0.119mA.
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We can also calculate IB using the relations (7.4) and (7.5), where (7.5) was
obtained neglecting the contribution of the saturation current to IC . The result
is

IB = IC
β

= 9.981

82.33
= 0.121,

This value differs from the previous one by 0.002 mA, which corresponds
to a difference of only 1.7%.

7.3 Currents in the Bipolar Transistor

Like in the junction diode, the currents in the bipolar junction transistor are deter-
mined by the diffusionmotion ofminority carriers near the interfaces of the junctions.
The fundamental difference between the diode and the transistor is that, while in the
diode the solution of the diffusion equation is subjected to the boundary conditions
at the junction interface, in the transistor it is necessary to consider the two interfaces
of the junctions. To calculate the currents we must then solve the diffusion equation
for the carriers concentrations in the three regions of the transistor and impose the
boundary conditions at the two junction interfaces. After obtaining the variations in
the concentrations of the minority carriers, we shall calculate the diffusion currents
as we did for the diode in Sect. 6.2.

7.3.1 Calculation of Currents in the One-Dimensional Model

We shall consider here a p-n-p transistor with the one-dimensional model illustrated
in Fig. 7.5. Thismodel is good for the device in Fig. 7.2 because the lateral dimensions
are much larger than the thicknesses of the layers. Let us assume that the thicknesses
of the emitter and the collector are very large compared to the diffusion length, while
the base has an arbitrary thickness. In the emitter and in the collector the minority
carriers are electrons, whose concentrations are, respectively, nE(x) and nC(x). The
holes injected by the emitter are minority carriers at the base, described by the
concentration pB(x). Since the emitter is long, nE(x) is described by an exponential
that falls away from the emitter junction. The corresponding diffusion current is then
given by same expression obtained in Sect. 6.2 for a p–n junction. From Eq. (6.28)
we can write the contribution of electrons to the emitter current

IEn = e A
DnE

LnE
nE (eeVEB/kBT − 1), (7.6)
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x = l

p n p

x = 0 x

Fig. 7.5 One-dimensional model used to calculate the currents in a p-n-p transistor. Note that the
x = 0 and x = l coordinates are at the ends of the depletion regions of the emitter and collector
junctions

where A is the area of the transistor cross-section, nE is the equilibrium concentration
of electrons in the emitter (we have omitted 0 in the subscript to simplify the notation),
DnE and LnE are the diffusion coefficient and length, respectively, and VEB is the
voltage between emitter and base. In the same way we can write the contribution of
electrons to the collector current as

ICn = −e A
DnC

LnC
nC (eeVCB/kBT − 1), (7.7)

where the notation is analogous to that of Eq. (7.6). Notice that the sign is negative
because the positive sign of IC corresponds to the current flowing from side n to side
p of the collector junction, and also thatVCB is usually negative. In the case of holes in
the base, the solution for the variation of the concentration pB(x) is more complicated
because it is necessary to consider the full solution of the diffusion equation, given
by Eq. (5.83)

δpB ≡ pB(x) − pB = C1 e
−x/L p + C2 e

x/L p , (7.8)

where pB is the equilibrium concentration of holes in the base and Lp is the diffusion
length. Note that we have omitted the subscript 0 in pB to simplify the notation. To
obtain δpB(x) it is necessary to impose the boundary conditions at the emitter and
collector junctions, at x = 0 and x = l, and calculate the constants C1 and C2. At
the emitter–base junction, neglecting the thickness of the space charge region, we
use Eq. (6.24) to obtain an expression for the hole concentration in terms of the
polarization voltage

δpB(x = 0) ≡ �pE = pB (eeVEB/kBT − 1), (7.9)
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Similarly, at the collector junction we have

δpB(x = l) ≡ �pC = pB (eeVCB/kBT − 1) (7.10)

Note that in a transistor under normal operating conditions, the emitter junction
is forward biased (VEB > 0), while the collector junction is reverse biased (VCB < 0).
In this situation, and for VEB � kBT and |VCB | � kBT , where kBT /e = 0.025 V at
T = 290 K, the boundary conditions (7.9) and (7.10) can be written approximately
as

�pE ≈ pB e
eVEB/kBT � pB, (7.11)

�pC ≈ −pB � �pE . (7.12)

The result (7.12) is due to the fact that, in the reverse biased junction, the holes in
excess of equilibrium in the base are “pulled” quickly to the collector by the strong
electric field, so that their concentration is very small. Considering that the solution
(7.8) of the diffusion equation at the emitter and collector junctions are

�pE = C1 + C2,

�pC = C1 e
−l/L p + C2 e

l/L p ,

and using the boundary conditions (7.11) and (7.12) we obtain for the coefficients

C1 = �pE el/L p − �pC
2 sinh(l/L p)

, (7.13)

C2 = �pC − �pE e−l/L p

2 sinh(l/L p)
. (7.14)

Before proceeding with the analysis of the currents, let us examine the behavior
of the minority carrier concentrations in the three regions of the transistor. Under
normal operating conditions, the equilibrium concentration of holes in the n-type
base is very small, so that we can consider �pC ≈ pB ≈ 0. Substituting Eqs. (7.13)
and (7.14) in (7.8), and using this approximation, we obtain for the hole concentration
in excess of equilibrium in the base, that is, for 0 < x < l

δpB(x) = �pE
sinh[(l − x)/L p]

sinh(l/L p)
. (7.15)

In the case of electrons in the emitter and in the collector, their concentrations are
given by simple exponentials, as discussed earlier. Figure 7.6 illustrates the variations
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Fig. 7.6 Variations of the concentrations of the minority carriers in a p-n-p transistor with forward
bias at the emitter junction and reverse bias at the collector junction. The value of �pC ≈ pB is
exaggerated, since pB � �pE

of the minority carriers concentrations in the three regions of a p+-n-p transistor with
forward bias conditions. Note that in general the base is made with small thickness,
l � L p, so as to minimize the base current. For this reason, the variation in hole
concentration is approximately linear. Having obtained the concentration of holes in
the base, we can calculate its contributions to the currents. Equation (5.57) gives for
the diffusion current of holes in the base

Ip(x) = −e A Dp
dδpB
dx

,

that applied to Eq. (7.8) gives

Ip(x) = e A
Dp

L p

(
C1 e

−x/L p − C2 e
x/L p

)
. (7.16)

The components of the emitter and collector currents due to holes are given by
the values of Eq. (7.16) at x = 0 and x = l, respectively,

IEp = Ip(x = 0) = e A
Dp

L p
(C1 − C2), (7.17)

ICp = Ip(x = l) = e A
Dp

L p

(
C1 e

−l/L p − C2 e
l/L p

)
. (7.18)

Replacing Eqs. (7.13) and (7.14) in (7.17) and in (7.18) and using the definitions
of hyperbolic functions we have

IEp = e A
Dp

L p

(
�pE coth

l

L p
− �pC cosh

l

L p

)
, (7.19)
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ICp = e A
Dp

L p

(
�pE cosh

l

L p
− �pC coth

l

L p

)
. (7.20)

Adding the contributions of electrons and holes given by Eqs. (7.6), (7.7), (7.19),
and (7.20), and using the expressions (7.9) and (7.10), we obtain the dependencies
of the emitter and collector currents on the polarization voltages and the material
parameters

IE = e A
Dp

L p
pB

[(
eeVEB/kBT − 1

)
coth

l

L p
− (

eeVCB/kBT − 1
)
cosh

l

L p

]

+ e A
DnE

LnE
nE

(
eeVEB/kBT − 1

)
, (7.21)

IC = e A
Dp

L p
pB

[(
eeVEB/kBT − 1

)
cosh

l

L p
− (

eeVCB/kBT − 1
)
coth

l

L p

]

− e A
DnC

LnC
nC

(
eeVCB/kBT − 1

)
. (7.22)

With Eqs. (7.21) and (7.22) one can calculate all parameters and characteristic
curves of the transistor. The base current can be obtained using these two expressions
in the continuity equation, IB = IE − IC . The transistor parameters can be calculated
by substituting Eqs. (7.19)–(7.22) in the definitions (7.1)–(7.5). Since these equations
in the general forms are difficult to interpret, we shall calculate the quantities of
interest bymaking some simplifying approximations that can be seen in the following
example.

Example 7.2 A p+-n-p+ Si transistor at T = 300 K has the following charac-
teristics: Cross-section area A = 10−3 cm2; base thickness l = 1 µm; concen-
trations of impurities, in the emitter NaE = 1017 cm−3, in base Nd = 5 ×
1015 cm−3, in the collector NaC = 5 × 1017 cm−3; recombination times of
the minority carriers, in the emitter and collector, τ n = 0.5 µs, in the base
τ p = 1 µs. Calculate the emitter and collector currents with the emitter–base
junction polarized directly with VEB = 0.7 V, and the collector–base junction
reversed polarized, with VCB = −10 V.

To calculate the currents usingEqs. (7.21) and (7.22) it is necessary, initially,
to calculate the concentrations of theminority carriers and the diffusion lengths.
The equilibrium concentration of holes in the base is calculated with (5.38),
with the value of ni given in Table 5.2. Using SI units we have,

pB = n2i
Nd

= 1.52 × 1020 × 1012

5 × 1015 × 106
= 4.5 × 1010 m−3.
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The equilibrium concentrations of electrons in the emitter and in the
collector are calculated with Eq. (5.41)

nE = n2i
NaE

= 1.52 × 1020 × 1012

1017 × 106
= 2.2 × 109 m−3,

nC = n2i
NaC

= 1.52 × 1020 × 1012

5 × 1017 × 106
= 4.5 × 108 m−3.

The diffusion lengths are calculated through their relationshipwith the diffu-
sion coefficient D and the recombination time τ , L = (D τ )1/2. Using the value
of D for Si in Table 5.2, and the values given for τ , we obtain in the SI

L p = (
12.5 × 10−4 × 1 × 10−6)1/2 = 3.5 × 10−5 m = 35µm,

Ln = (
35 × 10−4 × 0.5 × 10−6

)1/2 = 4.2 × 10−5 m = 42µm.

We see then that l/L p � 1, and therefore the hyperbolic functions in Eqs.
(7.21) and (7.22) can be replaced by their binomial expansions. With x = l/Lp,
we have x = 1/35, so that

coth x ≈ 1

x
+ x

3
= 35

1
+ 1

3 × 35
= 35.0095,

cosh x ≈ 1

x
− x

6
= 35

1
− 1

6 × 35
= 34.9952.

Finally, to compare the relative values of the different terms in Eqs. (7.21)
and (7.22), it is necessary to calculate the values of the exponentials containing
the polarization voltages. For T = 300K the thermal energy is kBT = 0.026 eV,
so that

eeVEB/kBT = e0.7/0.026 = e26.92 = 4.9 × 1011,

eeVCB/kBT = e−10/0.026 = e−384.6 ≈ 0.

We see then that, since exp(eVEB/kBT ) � 1, both in (7.21) and (7.22), the
terms that do not contain this factor can be neglected. So we can write

IE ≈ e A
Dp

L p
pB e

eVEB/kBT coth
l

L p
+ e A

DnE

LnE
nE e

eVEB/kBT ,

IC ≈ e A
Dp

L p
pB e

eVEB/kBT cosh
l

L p
.
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Using the parameters in Table 5.2, the transistor parameters, and the values
obtained previously, we have, in the SI

IE = 1.6 × 10−19 × 10−7 × 12.5 × 10−4

3.5 × 10−5
× 4.5 × 1010 × 4.9 × 1011 × 35.0095

+ 1.6 × 10−19 × 10−7 × 35 × 10−4

4.2 × 10−5
× 2.2 × 109 × 4.9 × 1011

IE = 0.44112 + 0.00144 = 0.44256A.

IC = 1.6 × 10−19 × 10−7 × 12.5 × 10−4

3.5 × 10−5
× 4.5 × 1010 × 4.9 × 1011 × 35.9952

= 0.44094A.

Clearly, the values of the emitter and collector currents are very close, as
was expected. It is important to note that, if we had used in the expressions
for IE and IC only the first term of the binomial expansions of the hyperbolic
functions, and if the IEn contribution were neglected, the two currents would be
exactly the same. Therefore, since the difference between the two currents is
the base current, it is essential to use the first two terms in the series expansions.
We also see that, although the contribution of the thermally generated electrons
is small, it should not be neglected, since it is presence in IE , but not in IC , has
an important contribution for the difference between the two currents.

7.3.2 Base Current and Transistor Parameters

As shown in the calculations made in Example 7.2, in a p-n-p transistor with normal
polarization, the exponential factor exp(VEB/kBT ) is very large, while the factor
exp(VCB/kBT ) is negligible. We can then obtain an approximate expression for the
base current. Neglecting terms that do not contain the factor exp(VEB/kBT ) in Eqs.
(7.21) and (7.22) we have for the base current

IB = IE − IC = e A eeVEB/kBT

[
Dp

L p
pB

(
coth

l

L p
− cosh

l

L p

)
+ DnE

LnE
nE

]
.
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It can be shown (Problem 7.2) that this expression reduces to

IB = e A eeVEB/kBT

(
Dp

L p
pB tanh

l

2L p
+ DnE

LnE
nE

)
. (7.23)

This result shows that in a p-n-p transistor with normal polarization, the base
current is dominated by two contributions. The second term in (23) corresponds to
the contribution of the electrons injected from the base to the emitter, represented
by component 7 in Fig. 7.4. To interpret the other contribution, we introduce in the
first term of (7.23) the excess concentration �pE , given by Eq. (7.11). Neglecting
the term in nE we obtain

IB ≈ e A
Dp

L p
�pE tanh

l

2L p
.

Finally, considering that the base thickness is quite smaller than the diffusion
length Lp, we can use the approximation tanh x ≈ x to obtain

IB ≈ e A l �pE
2τp

, (7.24)

where τp = L2
p/Dp is the recombination time of holes. This equation has a simple

physical interpretation. Since the concentration of holes in excess of equilibrium in
the base is �pE at x = 0 (emitter), and �pC = 0 at x = l (collector), the quantity
e�pEA l/2 ≡ Qp is the total charge of the holes that disappear in the base due to
recombination. Since recombination occurs over a characteristic period of time τ p,
the current that must be supplied to the base to replace the charge that disappears and
maintain the steady-state regime is Qp/τ p. This is precisely the base current given
by Eq. (7.24). This result confirms the qualitative interpretation of the base current
described at the end of Sect. 7.2. Equation (7.24) shows that to have a small current
IB one should make the base very narrow compared to Lp, and with a concentration
of impurities relatively low so that the time τ p is long.

Example 7.3 Calculate the base current in the transistor of Example 7.2 using
Eq. (7.23), and compare with the value obtained by the difference between IE
and IC calculated in Example 7.2.

Substituting in Eq. (7.23) the values of the quantities in Example 7.2 and
using tanh (l/2L p) ≈ l/2L p we have

IB = 1.6 × 10−19 × 10−7 × 4.9 × 1011

×
[
12.5 × 10−4

3.5 × 10−5
× 4.5 × 1010 × 1

2 × 35
+ 35 × 10−4

4.2 × 10−5
× 2.2 × 109

]
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IB = 1.6 × 10−19 × 10−7 × 4.9 × 1011 × [
2.29 × 1010 + 1.83 × 1011

]

IB = 1.614 × 10−3 A = 1.614mA.

It is interesting to note that, in this case, the contribution of thermal electrons
(IEn) to the base current, given by the second term of the equation above, is
larger than the contribution given by first term. In a p+-n-p transistor, with a
much higher concentration of impurities in the emitter that in the base, nE is
much smaller and the recombination term dominates over IEn.

The value of IB obtained by the difference between the currents calculated
in Example 7.2 is

IB = IE−IC = 0.44256 − 0.44094 = 0.00162A = 1.62mA

which is very close to the value calculatedwith Eq. (7.23). Evidently, the differ-
ence between the two values is due to the approximations made in hyperbolic
functions and to the numerical roundings.

To obtain the parameters γ , B, α, and β of the transistor, we shall neglect in Eqs.
(7.6)–(7.22) the terms in �pC and also the reverse saturation current in the collector.
This approximation is valid because when used as an amplifier, the transistor always
has the collector junction reverse polarized. With this approximation, using Eqs.
(7.6), (7.11), and (7.19) in the definition of the injection efficiency (7.2) we obtain

γ = IEp
IE

= 1

1 + IE/IEp
= 1

1 + (DnEnE L p/Dp pBLnE ) tanh(l/L p)
.

Using the relationships (5.38) and (5.41) between the equilibrium concentrations
of minority carriers and the concentrations of donor impurities (Nd) in the base and
of acceptors (Na) in the emitter, this expression can be written in the form

γ =
(
1 + DnE Nd L p

DpNaLnE
tanh

l

L p

)−1

. (7.25)

Using only the first term of Eq. (7.22) for IC and the first term of (7.19) for IEp,
with �pE given by (7.9), the base transport factor, defined in (7.1), becomes

B = IC
IEp

= cosh(l/L p)

coth(l/L p)
= sech

l

L p
. (7.26)

With Eqs. (7.25) and (7.26), one can show that the current transfer factor α defined
in (7.3) is
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α = IC
IE

= B γ =
(
cosh

l

L p
+ DnE Nd L p

DpNaLnE
sinh

l

L p

)−1

. (7.27)

Finally, using Eqs. (7.27) in (7.5) we obtain for the amplification factor β defined
in (7.5)

β = IC
IB

= α

1 − α
≈

(
cosh

l

L p
+ DnE Nd L p

DpNaLnE
sinh

l

L p
− 1

)−1

. (7.28)

Considering that l/L p � 1, we can obtain a simpler expression for β. Using the
expansions of the hyperbolic functions,

sinh x ≈ x, cosh x ≈ 1 + 1

2
x2,

the amplification factor given by Eq. (7.28) becomes, approximately,

β =
(

l2

2L2
p

+ DnE Nd l

DpNaLnE

)−1

. (7.29)

With Eqs. (7.26)–(7.29) one can calculate all transistor parameters from its
fabrication data with good precision.

Example 7.4 Calculate the amplification factor of the silicon p-n-p transistor
with the same parameters of Example 7.2.

Using in Eq. (7.29) the parameters and quantities calculated in Example 7.2
we have

1

β
= 1

2 × 352
+ 35 × 5 × 1015 × 1

12.5 × 1017 × 42

1

β
= 1

2450
+ 1

300
= 0.00374.

Therefore, the amplification factor given by Eq. (7.29) is

β = 1

0.00374
= 267.3.

We can also calculate β directly, through the ratio between IC , obtained in
the Example 7.2, and IB, calculated in Example 7.3. The result is
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β = IC
IB

= 0.44094

0.00162
= 272.2.

The difference between the two values, of only 1.8%, is due to the
approximations made in the derivation of Eq. (7.29) and also to numerical
roundings.

7.3.3 The I-V Characteristic Curves

Equations (7.21) and (7.22) describe the currents in a p-n-p transistor very well. To
understand qualitatively the behavior of the currents as a function of the polarization
voltages, it is better to simplify the notation and write them in the following forms

IE = IEs
(
eeVEB/kBT − 1

) − αI ICs
(
eeVCB/kBT − 1

)
, (7.30)

IC = αN IEs
(
eeVEB/kBT − 1

) − ICs
(
eeVCB/kBT − 1

)
, (7.31)

where the new parameters are defined by

IEs = e A Dp pB
L p

coth
l

L p
+ e A DnE nE

LnE
, (7.32)

ICs = e A Dp pB
L p

coth
l

L p
+ e A DnC nC

LnC
, (7.33)

αN = e A Dp pB
IEs L p

cosh
l

L p
, (7.34)

αI = e A Dp pB
ICs L p

cosh
l

L p
. (7.35)

The relations (7.30) and (7.31) were originally obtained by J. J. Ebers and J. L.
Moll and are therefore called Ebers-Moll equations. They have fairly general validity,
even if the transistor cannot be represented by the simple one-dimensional model of
Fig. 7.4. In the general case, the parameters of the equations are not given exactly
by the expressions (7.32)–(7.35), however it is possible show that they obey the
relationship

αN IEs = αI ICs, (7.36)
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which is also satisfied by Eqs. (7.32)–(7.35). Clearly, the Ebers-Moll equations are
the sums of two diode equations like (6.29). The emitter current in Eq. (7.30) is
given by a term characteristic of the emitter junction diode, added to another term
proportional to the current in the collector junction diode. Similarly, the collector
current (7.31) is the sum of two terms, one for the emitter diode and the other for
the collector diode. These equations show that the transistor can be characterized by
only four parameters, related to each other by the expression (7.36). These parameters
are not generally supplied by the manufacturer, but can be easily measured in the
laboratory. Notice in Eq. (7.30) that if the collector–base junction is short-circuited,
that is if VCB = 0, the measurements of IE and IC as a function of VEB provide the
values of IEs and αNIEs, respectively. Similarly, making VEB = 0, one can measure
ICs and αI ICs and thus have a full characterization of the transistor described by Eqs.
(7.30) and (7.31).

The I-V characteristic curves of the transistor are nothing more than the graphical
representation of the Ebers-Moll equations. Since in the equations there are two
voltages, VEB and VCB, and two currents, IE and IC , it is necessary to select some
quantities and express them as a function of the others. Multiplying (7.30) by αN and
subtracting from (7.31) one has

IC = αN IE − (1 − αNαI ) ICs
(
eeVCB/kBT − 1

)
.

Similarly, multiplying Eq. (7.31) by αI and subtracting from (7.30) we obtain

IE = αI IC + (1 − αNαI )IEs
(
eeVEB/kBT − 1

)
.

These equations can be written in the form,

IE = αI IC + IE0
(
eeVEB/kBT − 1

)
, (7.37)

IC = αN IE − IC0
(
eeVCB/kBT − 1

)
, (7.38)

where

IE0 = (1 − αNαI ) IEs,

IC0 = (1 − αNαI ) ICs,

are, respectively, the saturation currents of the emitter junction with the collector
junction open (IC = 0), and of the collector junction with the emitter junction open
(IE = 0). With Eq. (7.38) we can make a plot of IC as a function of VCB with IE as
a parameter. For IE = 0, if VCB < 0, the curve IC - VCB is equal to that of a reverse
polarized junction, as in Fig. 6.7. Even with small values of VCB the current reaches
saturation with value IC ≈ IC0. If IE �= 0, we can make IC - VCB curves for several
values of IE , resulting in the set of curves shown in Fig. 7.7a. Note that for IE = 0
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Fig. 7.7 I-V characteristic curves of a p-n-p transistor: a curves with IE as a parameter used in the
common-base configuration; b curves with IB as a parameter for common-emitter configuration

and VCB < 0, part of the holes injected into the base by the emitter current reaches the
collector junction and produces an additional contribution to the reverse saturation
current, IC ≈ IC0 + αN IE . For this reason, the various curves in Fig. 7.7a resemble
those of a reverse polarized junction, displaced by αNIE . The curves in Fig. 7.7a
are useful when the transistor is used in the common-base configuration of Fig. 7.3.
In this case, if the base current is zero, the collector current is very small. This can
be understood by the fact that as IC = IE , since the collector junction is reversed
polarized, both currents must be small. As IB increases, the difference between IE
and IC increases and, even though the collector junction is reverse polarized, the
injection mechanism makes IC increase.

When the transistor is used in the common-emitter configuration, it is more conve-
nient to work with the IC - VCE curves, having the base current IB as a parameter.
Typical curves for a p-n-p transistor in the common emitter configuration shown in
Fig. 7.7b, clearly show that the current IC can be controlled by the small current IB.
The various I-V curves are characteristic of each type of transistor and are provided
by the manufacturer. In fact, they vary a little from one transistor to another, even
though they are of the same type, because the curves of the manufacturer represent
average data. Since the parameters also vary with temperature, it is common to find
curves for a few temperature values.

To conclude this section, we note that in a n-p-n transistor the signs of the currents
and the voltages are opposite to those of the p-n-p transistor. The equations for n-
p-n transistor have the same form as Eqs. (7.30)–(7.35), with the letters p and n
interchanged, since the roles of electrons and holes are interchanged.
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7.4 Applications of Transistors

Bipolar junction transistors have many applications in electronic circuits, the most
common are amplification and switching. Figure 7.8 shows the symbols of the n-p-n
and p-n-p transistors used in circuits, and a typical external view of an encapsulated
low power transistor. In the circuit symbols, the only difference between types n-p-
n and p-n-p is in the arrow on the emitter terminal, indicating the direction of the
forward current. In the encapsulated transistor there is no visible difference between
the two types. Only by looking at the manufacturer’s data for the transistor code it is
possible to know its type.

To operate in a convenient region of the I-V characteristic, the transistor junctions
need to be properly biased. Figure 7.9a shows a n-p-n transistor in the common-
emitter configurationwith a simple polarization circuit. Note that the voltages applied
to the emitter and collector junctions have opposite directions to the ones in a p-n-p
transistor. Since the transistor response is highly nonlinear, it is necessary to use
graphic methods to determine the so-called operating point, whose coordinates are
the currents and the voltages in the DC regime. As the resistance of the emitter

Fig. 7.8 a Circuit symbols of n-p-n and p-n-p transistors. b View of an encapsulated low power
transistor

Fig. 7.9 a Simple amplifier circuit with a n-p-n transistor in the common-emitter configuration.
b Graphic illustration of the method for determining the operating point P
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junction is very small, the base current is given approximately by IB ≈ EB/RB . To
calculate the collector current, we use the curve corresponding to the calculated value
of the current IB in the I-V characteristics for the common-emitter configuration, as
shown in Fig. 7.7b. The loop equation for the collector circuit is

EC = RB IC + VCE (IC , IB). (7.39)

This equation is represented in the IC-VCE plane by a line, called the load line,
that has a position determined by the intersections with the axes IC and VCE . It is
easy to see in Eq. (7.39) that they are given by IC = EC /RC and VCE = EC , as
shown in Fig. 7.9b. The intersection between the load line with the IC-VCE curve
of the transistor for the calculated value of IB, point P of Fig. 7.9a, is the solution
of Eq. (7.39) and therefore it is the operating point of the circuit. Depending on the
region of the I-V characteristic where the point is located, and also on the shape and
amplitude of the input signal, the transistor can perform different functions.

To behave as a good amplifier, the operating point should be in the active region
of the characteristic curves, shown in Fig. 7.7b. In this region, a variation �IB in
the small base current, produced by an AC signal applied to the circuit through the
capacitor in Fig. 7.9a, produces a variation�IC in the collector current. As long as the
base current does not approach the saturation or cutoff regions, shown in Fig. 7.7b,
the variation in the collector current is proportional to that of the base current, �IC
= β �IB, where β is the amplification factor. We see then that the position of the
operating point is essential for the proper operation of the transistor. For this reason,
it is customary to use a more complex polarization circuit than that of Fig. 7.9, in
which a feedback loop serves to stabilize the operating point.

Another important application of transistors is in switching circuits. Figure 7.10
shows a switching circuitwith ap-n-p transistor in the common-emitter configuration,
with a simple biasing scheme. The purpose of the circuit is to make the transistor
operate in two conducting states, one on,with a current, andone off,with zero current.
In the on state it must behave like a closed switch, that lets a current go through with
very low resistance, while in the off state it behaves like an open switch. This control
is done on the collector current, by means of a much lower base current. The two
states of the transistor can be achieved in the common-emitter configuration, as can

Fig. 7.10 Simple switching circuit using a p-n-p transistor in the common-emitter configuration
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be seen in the curves of Figure 7.7b. The load line for the circuit of Fig. 7.10 is
obtained in the same way as in Fig. 7.9. However, since there is no battery in the base
circuit, the base current is zero in absence of the input signal. In this situation, the
collector current is very small and the transistor is cut-off, or in the off state. When a
voltage signal vs with the shape shown in Fig. 7.10 is applied, the circuit operateswith
the base varying between two values, one that cuts off the collector current and the
other that drives the transistor to saturation. The cutoff region, shown in Fig. 7.7b, is
reached when the base current is zero or negative. On the other hand, the saturation
region is achieved when the base current is positive and sufficiently large. In this
situation the collector current is large and the transistor is in the on state. In this way,
a small power signal like vs controls the transistor making it to operate like a switch,
that can be open or closed. This switch can control a collector current much larger
than the base current, playing a role similar to that of an electromechanical relay,
but with many advantages. Since the relay has moving parts and uses mechanical
contacts, it is much slower and has much less durability than the transistor.

In an ideal switch, the transition from the off to the on state, or vice versa, should
be done almost instantly. Evidently that this does not happen in a real transistor.
There is a finite transient time, due to the fact that in the change from the saturation
state to the cutoff state, or vice versa, there is removal or introduction of distributed
charge in the base. This cannot be done instantly, because it would correspond to an
infinite current. The times for decay or growth in the charge of the base are essentially
due to the same effects mentioned in the case of the junction diode.

The switching transistor is used in many digital circuit applications, since its two
states correspond to bits 0 and 1 of the binary system.

7.5 Field-Effect Transistors

Field-effect transistors (FETs) belong to a family of very important devices for tech-
nological applications. Like bipolar transistors, FETs are three terminal devices
widely used for amplification and switching. However, from the point of view of
the circuit, there is a major difference between the two types of devices. While in
the bipolar transistor the output signal is controlled by an input current, in FETs it is
controlled by an input voltage signal.

The operating mechanisms of field effect transistors are quite different from the
ones in bipolar transistors, studied in the previous section.While in bipolar transistors
the control of the output signal is done by the diffusionmotion ofminority carriers in
the base, in the FETs the control is done by the drift motion of themajority carriers.
These carriers move from one terminal, called source, to another terminal, called
drain, through a uniform region of the semiconductor, the channel. The control of
the motion of majority carriers in the channel is done by an electric field created by
the voltage applied between a third terminal, called gate, and the source. This is the
reason for the name field-effect.
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There are threemain types of field-effect transistors: the junctionFET; themetal-
semiconductor FET; and themetal-insulator-semiconductor FET. In the junction
FET, abbreviated by JFET, the voltage applied to the gate varies the thickness of the
depletion region of a reverse biased p–n junction, and thus the resistance of the
channel. In the metal–semiconductor FET, or MESFET, the gate is formed by a
metal–semiconductor junction. The operation of MESFET is very similar to that
of JFET, however it has a faster response, and is therefore widely used in high
frequencies.

In the metal-insulator-semiconductor FET, the metallic terminal of the gate is
isolated from the semiconductor by an insulating layer. In the most common case the
insulator is an oxide of the semiconductor itself, such as SiO2 in the case of silicon.
In this case the transistor is called metal–oxide–semiconductor FET, or MOSFET.
Due to the presence of the insulating layer, this type is characterized by a high input
impedance and low power dissipation. The MOSFETs have huge applications in
digital integrated circuits and are essential components in computers and modern
information technology equipment.

7.5.1 The Junction Field-Effect Transistor

In the junction field-effect transistor, JFET, a variable voltage applied to the gate
controls the effective cross-section of a semiconductor channel through which the
majority carriers flow from the source to the drain. Figure 7.11a shows a section of
the semiconductor wafer with a JFET of n-type channel, where one can see the n-
channel and two p+ regions of the gates, as well as the metallic contacts for the source
(S), the gate (G), and the drain (D). Note that the two p+ gate regions are electrically

Fig. 7.11 Junction field-effect transistor with n-type channel. a Planar structure showing the
different regions and terminals of the source (S), gate (G), and drain (D). b Symmetrical model for
the channel region
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interconnected. Due to its symmetry, the structure with two gates is easier to analyze.
However, it is also common to manufacture the JFET with only one gate. The p-type
channel JFET is entirely analogous to the one with n-type channel, with the regions
p and n interchanged relative to those in Fig. 7.11a.

The operation of the JFET is very simple compared to the bipolar junction tran-
sistor. Let us consider the case of the n-channel JFET, shown in Fig. 7.11. The voltage
VD applied between the drain and the source produces a current ID in the channel,
formed predominantly by a drift motion of electrons. The electrons move from the
source to the drain, while the conventional direction of the current is the opposite.
The value of this current is determined by the voltage VD and by the resistance of
the channel, which in turn depends on the concentration of impurities, length, and
effective area of the channel cross-section. The area can be controlled by the sizes
of the depletion regions of the two p+-n junctions between the gates and the channel,
since there are no conduction electrons in these regions. As we saw in Sect. 6.1.3, the
thickness of the depletion region depends on the reverse voltage at the junction, so
that the drain current ID varies with the voltage VD between the gate and the source.
In this way, the variation of the current ID is controlled by the voltage VD.

7.5.2 The I-V Characteristics of the JFET

To calculate the I-V characteristics of the JFET, let us consider the symmetrical
model for the channel region shown in Fig. 7.11b. The channel has length L, depth
D (perpendicular to the plane of the figure), and effective thickness h(x), because
there are no conduction electrons in the depletion regions of the two channel-gate
junctions. The effective thickness is given by h = 2(a − l), where 2a is the distance
between the two gate regions and l is the thickness of each depletion region, which
depends on the reverse voltage at the junction. This voltage varies with x because the
current ID from the drain to the source produces a potential drop along the channel.
Therefore, h also varies with x, so that the area of the effective cross-section varies
along the channel. For this reason, the resistance of the channel is not given simply
by the usual expression, ρL/A. However, the dependence of the current ID on the
voltages VD and VG can be calculated with simple concepts and relationships.

The current density in the channel, given by Eqs. (5.45) and (5.48), can be written
in the form

J (x) = σ E(x) = e n μn E(x) = −e n μn
φ(x)

dx
, (7.40)

where φ (x) is the electric potential at the point with coordinate x in the channel,
relative to the position of the source (x = 0). The current intensity ID in the channel
is given by the product of J with the effective area

ID = 2 [a − l(x)] D J (x), (7.41)
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where l(x) is the thickness of the depletion regions of the p+-n junctions in the
section with coordinate x. Considering that at x the reverse voltage is V (x), assuming
Na � Nd and negligible contact potential, the thickness l(x) is obtained using
Eq. (6.18). It can be shown that (Problem 6.4)

l(x) =
[

2ε

e Nd
V (x)

]1/2

, (7.42)

where the reverse voltage at the junction V (x) is given by the potential difference
between a point at x in the channel axis and the gate, that is V (x) = φ (x) − VG.
Replacing Eqs. (7.40) and (7.42) in (7.41), using this relation for V (x) and making
n = Nd we obtain

ID = −2 e Nd μn D

{

a −
[

2ε

e Nd
(φ − VG)

]1/2
}
dφ

dx
.

We can now separate the variables φ and x and evaluate the integrals on both sides
between x = 0 and x = L. Since the drain voltage relative to the source is VD = φ(L)
− φ (0), integration of both sides of the above equation gives

L∫

0

ID dx = −2 e Nd μn D

VD∫

0

{

a −
[

2ε

e Nd
(φ − VG)

]1/2
}

dφ.

The integral on the left-hand side is trivial because the current intensity ID does
not vary with x. The integral in φ is also simple to perform, leading to

ID = −2 e Nd μn D a

L

{

VD − 2

3

(
2ε

e Nd a2

)1/2[
(VD − VG)3/2 − (−VG)3/2

]
}

.

(7.43)

This expression can be simplified using the following considerations. The multi-
plicative factor to the left of the brackets is the inverse of the channel resistance
without the depletion regions, called channel conductance

G0 = 1

R
= σ 2Da

L
= 2 e Nd μn D a

L
. (7.44)

The effective channel thickness, given by h (x) = 2 [a − l(x)], decreases with
increasing x, so that the smallest thickness occurs at the drain end, l = a, as shown in
Fig. 7.12. Since V (x) increases with x, from Eq. (7.42) we see that l(x) also increases
with x. Thus, there is a value of the voltage for which the depletion regions of the two
gates touch each other at the drain end, causing an obstruction of the channel. This
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Fig. 7.12 Variation of the
effective channel thickness
for two values of the drain
voltage. For VD = Vp + VG,
the channel undergoes a
constriction at x = L

condition is known as pinchoff. The value of voltage for which this occurs, given
by (7.42) with l = a,

Vp = e Nd a2

2ε
, (7.45)

which called the pinchoff voltage. Substituting the definitions (7.44) and (7.45) into
(7.43), and noting that the negative sign of (7.43) is due to the fact that the current has
the −x direction, we obtain the final expression for the absolute value of the drain
current as a function of the drain and gate voltages

|ID| = G0 Vp

[
VD

Vp
+ 2

3

(
−VG

Vp

)3/2

− 2

3

(
VD − VG

Vp

)3/2
]

. (7.46)

It is important to note that this expression is only valid if the channel is open at
all points, that is, for V (x) < Vp. Since the maximum reverse voltage at the junction
is V (L) = VD − VG, Eq. (7.46) is valid only for

VD−VG ≤ Vp. (7.47)

For drain voltages larger than the value given by (7.47), the current reaches satu-
ration, with a value obtained from Eq. (7.46) with VD − VG = Vp. Also note that
the gate normally operates at zero or negative voltages relative to the source, so that
in all of the above expressions VG ≤ 0.

Example 7.5 Consider a Si JFET with Nd = 5 × 1015 cm−3, Na = 1019 cm−3,
a = 1 µm, L = 15 µm, and D = 1 mm. Calculate parameters G0 and Vp and
plot the ID− VD curves for some values of VG.

Since Na � Nd , the thickness of the depletion region can be calculated
with Eq. (7.42). So, using in Eq. (7.44) the data in Table 5.2 and the transistor
parameters we have

G0 = 2 e Nd μn D a

L
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Fig. 7.13 I-V characteristics of a junction field-effect transistor, obtained from Eq. (7.46), with Vp
= 3.8 V and G0 = 1.44 × 102 �−1

= 2 × 1.9 × 10−19 × 5 × 1015 × 106 × 1350 × 10−4 × 10−3 × 10−6

15 × 10−6

G0 = 1.44 × 10−2�−1.

With Eq. (7.45) we obtain

Vp = e Nd a2

2ε
= 1.9 × 10−19 × 5 × 1015 × 106 × 10−12

2 × 11.8 × 8.85 × 10−12
= 3.8V.

Using these values of G0 and Vp in Eq. (7.46) we obtain numerically the
curves shown in Fig. 7.13.

To understand the behavior of the I-V curves in Fig. 7.13, let us consider initially
VG = 0. In this situation the current given by Eq. (7.46) is

|ID| = G0 Vp

[
VD

Vp
− 2

3

(
VD

Vp

)3/2
]

. (7.48)

Note that for small drain voltages, VD � Vp, the first term in (7.48) is much larger
than the second, so that, |ID| ≈ G0 VD . This is the linear region of the characteristic
curve with VG = 0, indicated in Fig. 7.13. The presence of the term with 3/2 power
and negative sign in Eq. (7.48) produces a decrease in the growth rate of |ID| with
increasingVD. To analyze the behavior of the drain current withVG = 0, we calculate
the derivative of |ID| in (7.48) with respect to VD

d|ID|
dVD

= G0
[
1 − (VD/Vp)

1/2]
VG=0. (7.49)
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We see then that |ID| reaches a maximum (dID/dVD = 0) exactly at VD = Vp (for
VG = 0). At this value of the drain voltage, the current reaches saturation with a
value given by Eq. (7.48) with VD = Vp

IDsat = G0 Vp/3. (7.50)

For VD > Vp the current maintains this value, which corresponds to the situation
of the channel almost completely closed. This is so because if the current decreased,
the voltage drop in the channel would also decrease and it would open. This delicate
balance keeps the current constant for VD > Vp, with the same value at saturation
given by Eq. (7.50).

For nonzero and negative gate voltages VG, the behavior of the ID-VD curves is
qualitatively the same as described for VG = 0. The main differences are that the
saturation current and the pinchoff drain voltage decrease with the increase of −VG.
The dashed line in Fig. 7.13 indicates the geometrical locus of the saturation points
for VG �= 0.

Note that the voltage and current values shown in Fig. 7.13 are typical of a JFET.
The transistor works with drain and gate voltages of a few volts and drain current in
the mA range. The characteristic curves of the field effect transistor resemble those
of the bipolar transistor shown in Fig. 7.7b. The essential difference is that while
in the bipolar transistor the control parameter is the base current, in the JFET the
control is done by the gate voltage. So, since the gate voltage in the JFET is applied
in a reverse biased junction, the input current is very small compared to the base
current on the bipolar transistor. In a typical JFET the current at the gate is in the
range of 10−9 to 10−12 A. Since the voltage applied to the gate is of a few volts, the
input impedance exceeds 108 �, so that the power dissipation is quite smaller than
in bipolar transistors.

Junction field-effect transistors are used for amplification and switching, in
circuits similar to those of Figs. 7.9 and 7.10, in applications that require high input
impedance. The circuit symbols of n- and p-channel JFETs are shown in Fig. 7.14.

Fig. 7.14 Circuit symbols of
n- and p-channel field-effect
transistors (JFET)
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7.5.3 The Metal-Semiconductor Field-Effect Transistor

The operating principle of the metal-semiconductor field-effect transistor, or
MESFET, is basically the same as the JFET. The device has three terminals, source,
gate, and drain. The majority carriers flow from the source to the drain through
a semiconductor channel, type n or type p. The control of this current is done by
means of a voltage applied to the gate, which controls the thickness of the channel
and therefore its resistance. The difference to the JFET is that in the MESFET the
metallic terminal of the gate is in direct contactwith the semiconductor of the channel,
forming a Schottky barrier junction, instead of a p-n junction as in the JFET. Since
in the Schottky potential barrier there is no participation of minority carriers, the
response in the change of the channel thickness due to a variation in the gate voltage
is faster than inp-n junctions. Therefore, theMESFET is used in high frequency appli-
cations. Since GaAs has larger electron mobility than Si, it is the most used semicon-
ductor in the manufacture of high frequency MESFETs. More recently GaN, which
is also a direct-gap semiconductor, has become the best material for high-frequency
MESFETs for high-power applications, due to its large electron mobility and also
high breakdown voltage.

Figure 7.15 shows two commonMESFET structures. In both of them the substrate
is a high resistivity wafer made with the purest GaAs possible or with a small Cr
doping. Since the energy gap in GaAs is large, the Fermi level in the middle of the
gap in the intrinsic semiconductor, or with Cr doping, results in resistivities on the
order of 108 �cm. With this value of resistivity, the material is almost insulating,
and is called semi-insulating. The channel is formed by a layer of doped GaAs with
thickness of the order of 0.1 µm. Since the mobility of electrons in GaAs is 22
times larger than that of holes (see Table 5.2), one uses doping with donor impurities
to form n-channel MESFETs for high frequencies applications. Concentrations of
impurities of group VI, such as Se, of the order of 1017 cm−3, result in conductivities

Fig. 7.15 Illustration of GaAs MESFET structures. a Simple structure, with metallic terminals
of the source, gate and drain, deposited directly on the epitaxial layer that forms the channel.
b Structure in which the source, channel and drain regions are formed by ionic implantation with
type n impurities
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adequate to n-channel, in which electrons flow from the source to the drain. The
structure of the contacts is made through successive photolithographic processes.

The MESFET structure shown in Fig. 7.15a is quite simple, formed only by a
thin layer of n-GaAs grown epitaxially on the substrate and three metallic contacts.
The gate contact is made of Al or Ti alloys, W, or Au, which are suitable to form a
Schottky barrier in GaAs. The source and drain contacts must be ohmic, so they are
made with another metal, generally an alloy of Ge and Au. The fabrication of this
structure does not require the use of diffusion processes, it can be done with small
and very accurate dimensions. One can then make channels with lengths shorter
than 1 µm, which makes possible to minimize the transit time of the electrons and
gate capacitance, important requirements for applications in high frequencies. In
the structure of Fig. 7.15b the ohmic contacts of the source and drain are made by
means of two n+ regions with impurity concentrations on the order of 1018 cm−3.
Due to the requirements of precision and good definition of the boundaries between
the different regions, the doping that forms the source, channel and drain are made
by means of ionic implantation. This type of structure causes an excellent electrical
isolation between neighbor transistors manufactured in the same wafer to make an
integrated circuit, due to the semi-insulating nature of the substrate. This is not the
casewith the structure of Fig. 7.15a, because then-type epitaxial layer on the substrate
establishes direct contact between neighboring transistors. To isolate the neighbor
transistor elements, each is surrounded by a ditch with depth of about 0.2µm, which
reaches the semi-insulating substrate. The ditch is produced by a corrosion process
on a line defined by photolithography.

As mentioned in the beginning of the section, the functioning of the MESFET is
basically the same as the JFET. The Schottky junction formed between the gate and
the channel is reverse biased, which makes the input impedance of the transistor very
high. The voltage applied between the gate and the source determines the thickness
of the depletion region, which is given approximately by the same expression (7.42)
valid for JFET. Since the potential varies along the channel, the thickness of the
depletion region also varies, forming the triangular region indicated by the white
area in the structures of Fig. 7.15. The calculation of the current in the channel is
done exactly as for the JFET, so that the relationship between the drain current ID and
the gate and drain voltages,VG andVD, is given byEq. (7.46). Thus, the characteristic
curves of the MESFET have the same shapes as the curves for the JFET, shown in
Fig. 7.13.

GaAs MESFETs can be manufactured on integrated circuits to process analog
or digital signals at high frequencies, reaching the microwave range. Currently they
have wide application in telephony using frequencies of some GHz. MESFETs are
used to make microwave oscillators and amplifiers, which are essential elements for
circuits of mobile phones, high-frequency cordless phones, wi-fi routers and other
equipment.

The need to increase the frequency and the bandwidth in communication systems
has stimulated the development of new MESFET structures. Operation at higher
frequencies requires the decrease in transit time for electrons and therefore smaller
physical dimensions for the channel. In order to maintain the channel conducting it is
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necessary to increase its conductivity. This can be done to some extent by increasing
the concentration of impurities in the channel. However, excessive concentrations
increase the scattering of electrons and compromise themobility.An ingeniousway to
increase the concentration of electrons without increasing the concentration of donor
impurities is to make the channel with two layers, one of n-(GaAl)As and another of
pureGaAs that is grown directly on the substrate. This results in a heterojunctionwith
a band structure similar to that in Fig. 6.11. The composition of the n-(GaAl)As alloy
is made in such a way that the Fermi level is above the minimum of the well formed
in the discontinuity of the conduction band (in Fig. 6.11 it is a little below). The result
is that part of the electrons of the n-(GaAl) layer jump to the GaAs layer, becoming
trapped in the interface. Energetically what happens is that electrons occupy the
energy states below the Fermi level, staying trapped in the potential well. Since the
GaAs layer is intrinsic, the electron scattering is small, resulting in a high mobility
channel. The MESFET transistor made with this structure is called HEMT (High
Electron Mobility Transistor). HEMTs made of GaAs or GaN are widely employed
in mobile telephony operating in the microwave range, with frequencies that can
exceed 10 GHz.

7.6 Metal-Oxide-Semiconductor Field-Effect Transistor
(MOSFET)

A very important type of field-effect transistor, that has many more technological
applications than the JFET, is the metal-insulator-semiconductor field-effect tran-
sistor, known as MISFET. It belongs to a broader family of FETs that have insulated
gate. In this transistor the control current in the channel is made through the electric
field in a capacitor, formed by the metallic contact between the gate and the semicon-
ductor of the channel, separated by an insulating layer. By far the most usedMISFET
is made with silicon, in which the insulator is silicon dioxide, SiO2. The device is
known asMOSFET, meaning metal-oxide-semiconductor field-effect transistor. The
scaling and miniaturization of the MOSFET has been driving the rapid exponential
growth of electronic semiconductor technology since the 1960s. The development
of high-density MOSFET integrated circuits, such as memory chips and micropro-
cessors, has revolutionized the electronics industry and the world economy, and is
central to the digital revolution, silicon age, and information age.

Figure 7.16 shows the planar structure of a n-channel MOSFET. It is formed by
two n+-type regions diffused (or ion implanted) on a p-type semiconductor substrate,
one for the source (S) and one for the drain (D). The source and the drain are
connected to the circuit by means of aluminum contacts, while the metallic contact
of the gate is isolated from the semiconductor by an oxide layer. The conducting
channel between the source and the drain is induced in the semiconductor substrate
by a voltage applied to the gate, by means of the inversion phenomenon that will be
explained later.
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Fig. 7.16 Illustration of the
planar structure of a
n-channel MOSFET

If a voltage is applied between drain and source, in either direction, one of the
two p-n junctions becomes forward biased, while the other is reverse biased. In this
case, if there is no voltage at the gate, there is no channel and therefore the current
between source and drain is negligible due to the presence of the reverse polarized
junction. When a positive voltage is applied to the gate, a layer of negative charges
is induced in the semiconductor, in front of the metallic contact of the gate. This
layer of charges provides a conduction channel between source and drain, resulting
in a current that varies with the amplitude of the gate voltage. To understand the
mechanism of formation of the conducting channel, it is necessary to analyze the
behavior of the charges in the capacitor formed by the metal–oxide–semiconductor
structure, called MOS capacitor, that shall be presented in the next section.

7.6.1 The MOS Capacitor

Figure 7.17 shows the energy diagrams in the three regions of a MOS capacitor with
p-type semiconductor, for different values of voltageV applied between themetal and
the semiconductor. Figure 7.17a shows the energies in the equilibrium situation with
V = 0, in which the Fermi levels of the metal and the semiconductor are the same.
The work functions eφm and eφs of the metal and the semiconductor are indicated
in the figure. With the metal and semiconductor in contact with the insulator, eφm

and eφs are defined relative to the level of the oxide conduction band, and not to the
vacuum level, as was done in the case of Fig. 6.8. For this reason, these quantities
are also called modified work functions for the metal-oxide interface. To simplify
the analysis of the effect of the applied voltage, in Fig. 7.17 we consider that φm =
φs. In the general case of φm �= φs, the effect of the different work functions can be
easily incorporated in the final result.

Figure 7.17b shows the effect of a voltage V < 0 applied between the metal
and the semiconductor. In this case, negative charges appear on the metal side and
positive charges in the semiconductor, as in a common capacitor. These charges
create an electric field E in the direction from the semiconductor to the metal, as
indicated in the figure. Since in the p-type semiconductor the majority carriers are
holes, the appearance of positive charges corresponds to the accumulation of holes
in the semiconductor-oxide interface. This accumulation of holes is consistent with
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Fig. 7.17 Energy diagrams of aMOScapacitor for different values of the voltageV applied between
the metal and the semiconductor (type p)

the behavior of the energies, as we shall see below. When the voltage is applied
between themetal and the semiconductor, the electron energies in themetal change by
−eV relative to their equilibrium values. Therefore, with V < 0 the energies in the
metal increase by e|V |. As a result, the conduction band in the oxide is bent near the
interface and the Fermi level EFm in the metal rises above the Fermi level EFs in the
semiconductor, so that their difference becomes EFm − EFs = e|V |. This produces
in the vicinity of the interface an upward bending of the energies Ev of the valence
band, Ec of the conduction band, and Ei of the intrinsic Fermi level, as shown in
Fig. 7.17b. On the other hand, since the oxide layer is insulating, the application
of the external voltage does not result in a current in the semiconductor. Thus, the
Fermi level EFs does not vary across the semiconductor, as it does in p-n junctions
and metal–semiconductor junctions. In this way, the energy Ei moves away from the
level EFs at the interface. Since the concentration of holes is given by Eq. (5.32),
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p = ni e
(Ei−EFs )/kBT , (7.51)

one can see that that the hole concentration p increases exponentially with the differ-
ence Ei − EFs. Thus, the variation of the energies shown in Fig. 7.17b is consistent
with the accumulation of holes at the interface of the semiconductor with the oxide.

The behavior of the energies in the case of a positive electric potential in the metal
relative to the semiconductor is illustrated in Fig. 7.17c, d.With− eV <0, the electron
energies in the metal decrease with respect to the values in equilibrium, so that the
curvatures of Ec, Ev, and Ei near the interface are opposite to those of the diagram
in Fig. 7.17b. In this case Ei approaches EFs at the interface, so that, by Eq. (7.51),
the concentration of holes decreases in the oxide. If V is less than a certain threshold
value VT , the difference Ei − EFs decreases relative to the value in equilibrium
but it remains positive in all points, as in the diagram in Fig. 7.17c. In this case
the concentration p at the interface is smaller than the value in equilibrium, which
leaves a fraction of acceptor impurities not compensated. Thus, the semiconductor
is negatively charged when the metal is positively charged, as expected for V > 0.
The absence of holes in the vicinity of the interface is a phenomenon analogous to
the one in the space charge region, or depletion region, of a p–n junction.

If the voltage V exceeds a threshold value VT , the energy Ei at the interface falls
below the level EFs, as shown in Fig. 7.17d. In this case, as one can see in Eq. (7.51),
p < ni, and since p n = n2i , n > ni, so that electrons become the majority carriers. This
is a very interesting case in which a p-type semiconductor behaves as a n-type due to
an applied voltage and not because of doping. This phenomenon, called inversion, is
the key to the appearance of the n-channel in the p-type semiconductor of the MOS
transistor.

To calculate the voltage applied to the MOSFET above which an inversion layer
is induced in the semiconductor, it is necessary first to understand how the electric
potential drops in the oxide layer and in the semiconductor. For this we shall initially
consider an ideal MOS capacitor with no surface charges and with the same work
functions for the metal and the semiconductor, eφm = eφs. Later we shall generalize
the result for real surfaces.

If a voltage V is applied between the metal and the semiconductor, part of the
potential drop occurs in the insulator (Vi) and part in the semiconductor (Vs), so that

V = Vi + Vs . (7.52)

This voltage produces charges Qm on the metal surface and Qs in the semicon-
ductor, where Qm = −Qs = Q, as in a capacitor. If V > 0, then Q > 0. The potential
drop in the insulator is related to the charge through the capacitance, as in a capacitor
with two metal plates

Vi = Q

Ci
, (7.53)
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Fig. 7.18 Charge
distribution in an ideal MOS
capacitor with a p-type
semiconductor (n-channel),
in the depletion
approximation. The dashed
line indicates the charge
created by the inversion
when V > VT

where Ci = εiA/d, where εi is the permittivity of the insulator, d is its thickness and
A the area. To relate the potential drop in the semiconductor with the charge, it is
necessary to solve the problem of distributed charge. Since the full problem is very
difficult, we shall use an approximation for the charge distribution, as was done for
the p–n junction in Sect. 6.1.3. We assume that the charges in the semiconductor are
uniformly distributed in a layer of thickness l, as shown in Fig. 7.18. In the depletion
approximation we consider that all acceptor impurities in the layer are ionized, so
that the total charge in the semiconductor is Qs = −Q = −eNal A. In this situation,
the equation of Gauss’s law can be easily integrated to obtain the electric field, and
from it the variation of the potential. The relationship between the depletion layer
thickness and the potential drop Vs in the semiconductor is the same as in Eq. (6.18),
with V 0 replaced by Vs and without the term in Nd. Thus

Vs = e Na

2εs
l2, (7.54)

where εs is the permittivity of the semiconductor. Note that this result was obtained
under the assumption that the applied voltageV is sufficient to produce total depletion
in the layer of thickness l, but without inversion. With Eqs. (7.52)–(7.54) we can
calculate the thickness l as a function of V, as long as V is smaller than the threshold
value VT to produce inversion. Substituting in Eq. (7.52) the expressions for Vi and
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Vs in Eqs. (7.53) and (7.54), with Q = eNal A, we obtain an equation for the voltage
in terms of the thickness l

V = e Na d

εi
l + e Na

2εs
l2. (7.55)

This result shows that the thickness of the depletion layer increaseswith increasing
voltage V in the capacitor. Actually, this occurs only while V is less than VT . When
V reaches VT , the inversion produces a thin charge layer at the interface with the
oxide, shown by the dashed line in Fig. 7.18. Any additional increase in V above this
value results in a growth of the charge in the inversion layer, but not in the thickness
of the depletion layer. From Eq. (7.55) we obtain the total capacitance of the MOS
capacitor. Using the expression for the charge Q = eNal A in Eq. (7.55) and the
definition C = dQ/dV we have

C = A

d/εi + l/εs
. (7.56)

This expression can also be obtained by the series association of the capacitors
formed by the insulator (Ci) and the semiconductor. Since the thickness l increases
with V, the capacitance C decreases with the increase of V in the region 0 ≤ V ≤
VT . For V ≥ VT , the value of C stabilizes at Cmin, as shown in Fig. 7.19. With nega-
tive voltages there is an accumulation of holes at the semiconductor surface, so that
l = 0 and C is due to the capacitor formed only by the dielectric oxide, so that
C = Ci. Note that when the capacitance is measured with very low frequency, typi-
cally less than 100 Hz, the capacitance tends to approach the value Ci, as shown
by the dashed lines in Fig. 7.19. The mechanism responsible for this effect is the
generation of carriers in the space charge region. When the voltage variation is very
slow, the creation of electron-hole pairs in this region masks the capacitance varia-
tion. The holes tend to neutralize the acceptor impurities, eliminating the depletion
region, while the electrons go to the semiconductor-oxide interface. As a result, l →
0 and the capacitance tends towards the value Ci.

Fig. 7.19 Variation of the
capacitance C with the
voltage in the ideal n-channel
MOS capacitor. The dashed
curves for V > VT are the
results obtained when the
measurement of C is made at
very low frequencies,
typically less than 100 Hz



232 7 Transistors and Other Semiconductor-Based Devices

7.6.2 The Threshold Inversion Voltage

To understand the inversion mechanism and the formation of the n-channel in the p-
type semiconductor, let us analyze in detail the energy diagram of the semiconductor
when the voltage applied to the MOS capacitor is positive. As shown in Fig. 7.20,
the conduction and valence bands, as well as the intrinsic Fermi level Ei, bend
downwards in the vicinity of the interface. Since the electron energy is related to the
electric potential φ by E = −eφ, the deviation of the conduction band edge from its
equilibrium value Ec is eφ. Since the bending of Ei follows that of Ec, the deviation
of Ei at each point y is also eφ, which can be seen in Fig. 7.20. We see then that the
potential drop Vs in the semiconductor, due to the applied voltage V, corresponds
to the deviation of Ei at the interface with the semiconductor, that is, at y = 0. We
also see in Fig. 7.20 that if Vs > φF , there is a small range of y in which Ei < EFs,
and hence the concentration of electrons is larger than of holes. However, it is not
enough to have Ei < EFs for the conduction channel to be significant. The criterion
used to characterize a strong inversion is that the concentration n of electrons on
the surface has to be at least as large as the concentration of holes in the substrate,
p ≈ Na . From Eq. (7.51) we see that this condition is

Na = ni e
e φF/kBT , (7.57)

where eφF is the difference between the Fermi levels Ei and EFs away from the
interface. Since n = n2i /p, we see in Fig. 7.20 that to have n = Na in y = 0 it is
necessary that Vs = 2 φF . Using Eq. (7.57) we can write that the condition to have
an inversion layer in the semiconductor is

Vs ≥ V I
s = 2φF = 2

kBT

e
ln

Na

ni
. (7.58)

Fig. 7.20 Energy diagram in
the semiconductor near the
interface with the oxide in a
MOS capacitor with an
applied voltage V > VT
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Substituting this result in Eq. (7.54) we obtain the maximum depletion layer
thickness that is achieved under the inversion condition

lmax =
(
4εsφF

e Na

)1/2

=
[
4εskBT ln(Na/ni )

e2 Na

]1/2

. (7.59)

This is the situation in which the charge in the depletion region is maximum, and
has absolute value given by

Qd = e Na lmaxA = 2(εse NaφF )1/2 A. (7.60)

Substituting Eqs. (7.53) and (7.58) in (7.52), we obtain the value of the threshold
voltage in the MOS capacitor for the creation of the inversion layer

VT = Qd

Ci
+ 2φF , (7.61)

where Qd is given by Eq. (7.60). This result is valid for an ideal MOS capacitor. In a
real capacitor there are two effects that must be considered in the calculation of VT :
(i) the work functions φm and φs in general are different; (ii) there are charges inside
the oxide and at the semiconductor-oxide interface.

The modified work functions for the metal-SiO2 interface of some metals used
in metallic contacts are shown in Table 7.1. In the case of semiconductors, the work
function also depends on the concentration of impurities, because it varies with
the value of the Fermi level EFs. Figure 7.21 shows the difference of the modified
work functions, φms = φm − φs, for the interface between Al and Si, both p-type
and n-type, as a function of the concentration of impurities. We see that in this
case, φms is negative regardless of the type of impurity. In this case, the energy
diagram in equilibrium (V = 0) is similar to that of Fig. 7.17, valid for φm = φs

and V > 0. This means that even in equilibrium, the metal is positively charged
while the semiconductor has negative charges. Thus, to make the bands straight as
in Fig. 7.17a, it would be necessary to apply a negative voltage to compensate for
the difference in the work functions, with a value exactly equal to φms.

Another important effect in the MOS capacitors is the presence of charges in the
insulator and in the semiconductor-oxide interface. The charges inside the insulator
result from the contamination in the manufacturing process, as is often the case with
Na+ ions. These positive charges create an electric field that alters the variation of
the potential in the capacitor. The charges at the Si-SiO2 interface result from the
existence of surface states created by the symmetry breaking of the crystal lattice

Table 7.1 Modified work functions of some metals in contact with the insulator SiO2

Metal Al Ag Au Cu

eφm (eV) 4.1 5.1 5.0 4.7
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Fig. 7.21 Variation in the
difference of the work
functions φms = φm − φs at
the Al-Si interface as a
function of the concentration
of impurities

at the surface. In the Si oxidation process for the manufacture of the SiO2 layer, Si
atoms are removed from the surface and react with oxygen. When the process is
interrupted, some Si ions remain close to the interface, forming a superficial layer of
charges. The ensemble of charges in the oxide and at the interface can be represented
by an effective charge Qox. This charge produces an additional potential difference
in the capacitor Vox = Qox/Ci, where Ci is the capacitance of the insulator.

The threshold voltage previously calculated is valid for the situation in which,
with V = 0, the semiconductor bands have no bending. Since the different work
functions and the presence of the charge Qox result in an effective positive voltage
Vox − φms, the external voltage that must be applied to the capacitor to produce
inversion is smaller than VT obtained for the ideal case, Eq. (7.61). Thus, the value
of the threshold voltage in the general case is

VT = Qd

Ci
+ 2φF + φms − Qox

Ci
, (7.62)

This result shows that in order to obtain a small threshold voltage it is necessary
to make the capacitance Ci as large as possible. This requires a very small thickness
of the insulating oxide, generally on the order of 0.1 µm or less.

Example 7.6 Calculate the threshold inversion voltage VT for a MOSFET of
Al-SiO2-p Si at T = 295 K with the following parameters: d = 0.1 µm, Na =
1015 cm−3, charge in the oxide per unit of area Qox/A = 8 × 10−4 C/m2, oxide
dieletric constant 3.9.

Using the value for ni of Si in Table 5.2 we obtain with Eq. (7.58)

2φF = 2
kBT

e
ln

Na

ni
= 2 × 0.025 × ln

1015

1.5 × 1010
= 0.56V.
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Using Eq. (7.60) we calculate the charge per area unit

Qd

A
= 2 × (11.8 × 8.85 × 10−12 × 1.6 × 10−19 × 1015 × 106 × 0.28)1/2

Qd

A
= 1.37 × 10−4 C/m2.

The capacitance per unit area is determined by the thickness of the oxide
layer and its dielectric constant. For SiO2 εi = 3.9 ε0, thus

Ci

A
= εi

d
= 3.9 × 8.85 × 10−12

10−7
≈ 3.45 × 10−4 F/m2.

Using the value φms = −0.9 V from Fig. 7.21 and substituting theMOSFET
data and the calculated parameters in Eq. (7.62) we have

VT = 1.37 × 10−4

3.45 × 10−4
+ 0.56 − 0.9 − 8 × 10−4

3.45 × 10−4

VT = 0.4 + 0.56 − 0.9 − 2.3 = −2.24V.

Note that the inversion occurs at low voltage values, that can be supplied by
small batteries. This fact is important because it allows the operation of logic
circuits fed by small batteries in portable equipment.

7.6.3 The I-V Characteristics of the MOSFET

We are now in a position to understand the mechanism of operation of the metal-
oxide-semiconductor field-effect transistor with the structure shown in Fig. 7.16, as
well as to calculate the drain current ID as a function of the drain and gate voltages
VD and VG. If a positive voltage VD is applied between drain and source, the p-n
junction between substrate and drain becomes reversed polarized. Thus, an electric
current flows from the drain to the source (electrons go from the source to the drain)
as long as there is an inversion layer over the entire length of the semiconductor-oxide
interface. This layer can be induced by a voltage VG between gate and source larger
than a threshold value VGT . This value is different from VT of Eq. (7.62), because the
drain voltage raises the potential of the semiconductor relative to the metallic contact
of the gate. Due to the presence of the current ID, the potential of the semiconductor
increases gradually from source to drain. This results in a variation of the threshold
voltage across the capacitor and, consequently, in a gradual decrease in the thickness
of the inversion layer from source to drain, as shown in Fig. 7.16. Thus, the minimum



236 7 Transistors and Other Semiconductor-Based Devices

Fig. 7.22 Model for the
variation of the inversion
layer between source and
drain in a n-channel
MOSFET

gate voltage VGT that induces a conduction channel across the entire length of the
semiconductor is determined by the value of the threshold voltage at the end of the
drain

VGT = VT + VD. (7.63)

To calculate the current ID produced by the voltage VD it is necessary, initially, to
determine the charge in the inversion layer. For this we shall consider the model for
the variation of the inversion layer between source and drain in a n-channelMOSFET
shown in Fig. 7.22. TheMOS capacitor is divided into elementary capacitors ofwidth
dx and area dA = Ddx, where D is the depth in the direction perpendicular to the
plane of the paper. According to Eq. (7.53), the elementary charge in each capacitor
is dQ= Vi (x) dCi, where dCi =Cidx/L and Vi (x) is the voltage drop in the insulator
at the point with abscissa x. Vi (x) is determined by the gate voltage VG, the effective
voltage Vox − φms, the potential drop Vs in the semiconductor and the potential
difference φ (x) between point x and the source (x = 0). Under the condition of
inversion, at point x the voltage is Vs = 2φF , so that the elementary charge in the
capacitor at dx is

dQ = Ci

L
[VG + (Vox − φms − 2φF ) − φ(x)] dx .

Note that in the inversion condition, this charge is the same as the one in the
depletion region, whose value in the range dx is dQd = Qddx/L. Any increase in
in the voltage results in the appearance of a negative charge in the inversion layer,
whose modulus is dQn = dQ − dQd , since the charge in the depletion region does
not increase beyond the value given by Eq. (7.60). So we have

dQn = Ci

L
[VG + (Vox − φms − 2φF ) − φ(x)] dx − Qd

L
dx .
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Using Eq. (7.62) in this expression we can write

dQn = Ci

L
[VG − VT − φ(x)] dx . (7.64)

Under the action of a positive voltage VD, this (negative) charge moves in the
source-drain direction, producing a current ID in the −x direction. If h is the height
of the channel at position x, the volume charge density is ρ = −dQn/Dhdx. The
current density it produces is J = ρμnE, where μn is mobility of the charges in the
channel and E = − dφ/dx is the electric field. Thus, the drain current is

ID = J D h = μn
dQn

dx

dφ

dx
. (7.65)

Substituting (7.64) in Eq. (7.65) and passing dx to the left side, we can integrate
the two sides separately to have

L∫

0

ID dx = μnCi

L

VD∫

0

(VG − VT − φ) dφ.

Since ID does not vary with x, the integral on the left is simply IDL. Performing
the integral on the right-hand side and using the expression for VGT in Eq. (7.63) we
finally obtain

ID = μnCi

L2

[
(VG − VT )VD − 1

2
V 2
D

]
. (7.66)

Note that μn is the mobility of electrons near the interface, which in general is
smaller than the value inside the p-type substrate. In Eq. (7.66) it is common to use
the capacitance per area unit, ci = Ci/DL, instead of Ci. This equation describes the
drain current behavior quite well, mainly for low values of VD. In fact, this result is
only approximate because we neglected the variation of Qd with x. Equation (7.66)
shows that for small VD values, the current ID grows linearly with VD, provided
that VG > VT . For larger values of VD, the term in VD squared decreases the rate of
growth of ID. Note that the derivative

d ID
dVD

= μnCi

L2
(VG − VT − VD) (7.67)

is zero for VD = VDs ≡ VG − VT . At this voltage value, which is exactly the same
as in (7.63), the current is maximum. For drain voltages larger than this value, the
conduction channel closes so that the current saturates, in an effect similar to that in
JFET. Figure 7.23 shows curves for ID as a function of VD for some values of the
gate voltage VG, calculated with Eq. (7.66) for a n-channel MOSFET with VT = −
2 V, Ci/A = 3.45 × 10−4 F/m2, L = 10 µm, D = 300 µm and μn = 675 cm2/V.s
(half the value inside the substrate, given in Table 5.2). These values give μnCi/L2
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Fig. 7.23 I-V characteristic
curves of a n-channel
MOSFET

= μnDCi/AL = 0.7 mA/V 2. In Fig. 7.23 the dashed line indicates the points VD-ID
where the current saturates. Note that the value of the saturation current obtained
from Eq. (7.66) with VG − VT = VD = VDs is

IDsat = μnCi

2L2
V 2
Ds . (7.68)

This result shows that the saturation curve is a parabola, represented by the dashed
curve in Fig. 7.23.

7.6.4 Applications of MOSFETs

As mentioned in the beginning of this section, high-density integrated circuits with
MOSFETs are central to digital electronics. This is so because MOSFETs can be
used as building blocks for a large variety of storage and logic devices, that have been
manufactured with continuously smaller physical dimensions. The circuit symbols
of the n-channel and p-channel MOSFETs are shown in Fig. 7.24. Note that besides
the source, gate, and drain, they have a fourth terminal, corresponding to the contact
with the substrate, or with the body of the device, denoted by the symbol B. Since
the semiconductor of the substrate forms diode junctions with the source and the
drain, it must be maintained in a potential that makes the junctions not conducting.
In general, this terminal is connected to the source in the n-channel MOSFET and
to the drain in the p-channel MOSFET.

As we studied in the previous sections, in the operation of the MOSFET the
channel is induced in the substrate by the inversion mechanism, produced by a gate
voltage. If VG < VGT the channel is closed and there is no drain current. It is also
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Fig. 7.24 Circuit symbols of
n-channel and p-channel
MOSFETs

possible to make a MOSFET by doping a n-region between source and drain, so that
even without a gate voltage the current ID can be nonzero. In this type of MOSFET,
a negative voltage in the gate repels the electrons of the n-channel and reduces the
current, as in a n-JFET. The first type, in which the channel is induced and increases
with the voltage VG, is called of channel induction or channel enhancement. The
second type, in which the channel is depressed with the voltage, is called depletion.
It is common to use the symbols in Fig. 7.24 to represent the two types ofMOSFETs.

A most important feature of MOSFETs is the electric insulation of the gate, that
results in an input impedance of the order of 1014 �, regardless of the direction of the
gate voltage.A great advantage ofMOSFETs relative to JFETs is in itsmanufacturing
process, which requires a reduced number of steps. This facilitates the manufacture
of a large number of transistors with dimensions less than 1 µm, interconnected by
means of aluminumcontacts on the top surface, constitutinghigh-density integrated
circuits. The processes of fabrication of these circuits are referred to as very large
scale integration (VLSI)).

In digital integrated circuits using MOSFETs, it is possible to reduce drastically
the power consumption with the use of pairs of transistors interconnected, one n-
channel and the other p-channel. This technology, called complementary pair, or
CMOS, makes possible to manufacture watches, calculators, tablets, mobile phones,
computers and other equipment with extremely small power dissipation. As an
example of the use of a complementary pair, we show in Fig. 7.25a a CMOS inverter
circuit with induction MOSFETs. The two transistors are connected in series and
subjected to a voltage+ VDD. Figure 7.25b shows the ID-VD curves of transistors T1
(n-channel) and T2 (p-channel), for two values of the gate voltages, 0 and + VDD for
T1, and 0 and− VDD for T2. Note that the curves of T2 are placed on the same graph
as T1 but with the voltage axis inverted, so that the sum of the two drain voltages is
VDD. Thus, the operating point of the circuit is given by the intersection of the curves
of T1 and T2, because VD1 + VD2 = + VDD and ID1 = ID2.

The circuit of Fig. 7.25a is an inverter logic circuit of type NO. Its purpose is to
give an output signal Vo = 0 (bit 0) when the input signal is Vi = + VDD (bit 1), and
output + VDD (bit 1) when the input is zero (bit 0). This operation can be verified in
the plot in Fig. 7.25b. If the input signal is zero, the voltages at the gates of T1 and
T2 (relative to the respective sources) are, respectively, VG1 = 0 and VG2 = VDD. In
this situation, T1 is in the off state and T2 in the on state. The intersection of the two
curves is point 1 of the figure, so that the output voltage is close to + VDD. On the
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T1

T2

Vo
VG1= 0

VG1= VDD

VG2= −VDD

Fig. 7.25 a NO inverter circuit with complementary pair of MOSFETs. b Characteristic curves
used for the determination of the operating points

other hand, if the input is + VDD, T1 is on and T2 is off, so that the output signal
is given by point 0, VD ≈ 0. Note that in both situations the current in the circuit is
very small. This fact makes possible the fabrication of CMOS circuits with power
dissipation below 10 nW.

The peculiar properties of MOS transistors and capacitors are also used for the
construction of various types of devices that transfer or store digital information.
Among the most important ones are the semiconductor memories and charge-
coupled-devices, or CCD. The CCD is made by an array of MOS capacitors, one
next to other, in the same semiconductor substrate.When a voltage pulse is applied to
a capacitor, with sufficient amplitude to produce inversion, it creates a charge package
that is stored in the capacitor for a certain time. The presence of a charge package in
a capacitor represents the binary digit 1, while the absence represents 0. The MOS
capacitor is the basic element of semiconductor memories. A set of capacitors and
MOS transistors in an integrated circuit, forms a memory that stores the information
expressed in binary codes. Currently there is awide variety of semiconductormemory
devices, some of which will be presented in Sect. 7.8.2. When the capacitors are
properly interconnected, the application of a voltage pulse to a capacitor produces
a potential well in a neighbor capacitor, to which the charge package is transferred
through the semiconductor. In this way, it is possible to shift the digit 1 along the
series of capacitors, forming a CCD device, used to manufacture shift registers for
microprocessors, as well as image sensors, that are presented in Sect. 8.4.4.
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7.7 Power Control Devices: Thyristors

Thyristors are devices formed by several p-n junctions, that have large application
as switches to control high currents. The control is done electronically by means
of a relatively small current applied to one terminal of the device. The two main
members of the thyristor family, that shall be described qualitatively here, are the
semiconductor-controlled rectifier (SCR), and the bidirectional triode for alter-
nating current switching (TRIAC). Most power devices for low frequencies are
made with single crystal silicon, because its high thermal conductivity facilitates the
flowof the heat generated by the electric current and it can operate at up to 200 °C. For
this reason, SCR is often used to denote silicon-controlled rectifier. Until recently,
power devices for microwave frequencies were usually made of GaAs, that despite
the lower thermal conductivity, has much higher mobility than Si. However, more
recently GaN began to be used in most high-power devices because its thermal
conductivity is the same as Si but the electron mobility is nearly three times larger.

7.7.1 The Silicon-Controlled Rectifier- SCR

The silicon-controlled rectifier is made by doping a silicon substrate so as to have
four layers of impurities, forming a p-n-p-n structure, shown in Fig. 7.26a. The
device has two terminals at the ends, through which the main current to be controlled
circulates, anode (A) in region p1 and cathode (C) in region n2. A third terminal in
region p2, called gate (G), serves for the input of the control current. Figure 7.26b
shows the model used to represent the four regions of the device, which forms three
p-n junctions, denoted by J1, J2, and J3.

To understand the operating mechanism of the SCR, let us first analyze what
happens in the p-n-p-n device without the gate, also known as a Shockley diode.

Fig. 7.26 Silicon controlled rectifier. a Cross section of the structure in the form of a disc. bModel
used to describe the p-n-p-n device



242 7 Transistors and Other Semiconductor-Based Devices

Fig. 7.27 a I-V curves of the SCR: full line applies to zero gate current; dashed lines apply to two
values of the gate current, IG2 > IG1. b Circuit symbol of the SCR

If a positive external voltage is applied between anode and cathode, junctions
J1 and J3 become directly polarized, while J2 is reversed polarized. As a result, the
resistances of J1 and J3 are small, while that of J2 is very large. Thus, the full external
voltage appears in J2, and if it is less than the breakdown value, the current has the
reverse saturation value, which is very small. This is the blocking regime in the direct
polarization, indicated by the full line of the I-V characteristic shown in Fig. 7.27a.
Note that if the external voltage is negative, J1 and J3 are reversed polarized, and in
this case, they are the ones that limit the current to the saturation value, resulting in
the reverse blocking regime, indicated in the I-V curve.

The most interesting phenomenon of the p-n-p-n device occurs when the positive
voltage applied to the gate increases and reaches the breakdown value of junction J2.
In this situation, an avalanche occurs in J2 and the current tends to increase rapidly,
without resistance at junctions J1 and J3 that are forward biased. In this case, in region
p1 this current is formed by holes moving from the anode to the cathode, while in n2
it is formed by electrons going from cathode to anode. Once the conducting process
has started, a fraction of the holes of p1 is injected into region p2 through n1, as in a
transistor formed by the regions p1-n1-p2. Likewise, electrons in n2 are injected into
n1, as if n2-p2-n1 were another transistor. The current then starts to be produced by
the carrier injection process, ceasing the avalanche process. This results in a rapid
decrease of the voltage in J2 and even a change of its sign, so that the junction becomes
forward biased. In the forward conduction regime, shown in Fig. 7.27a, the current
can reach high values, being limited only by the resistance the external circuit, or by
the rupture of the device. In this regime the three junctions are forward biased. As
the potential drop in junction J2 has the opposite direction to the drops in J1 and J3,
the total voltage drop in the device corresponds to only one junction, which is about
0.7 V in the case of silicon.
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Note that the I-V curve in Fig. 7.27a is similar to the one of a thyratron tube,
which is a gas-filled tube that passes a current by an arc discharge when triggered
by a voltage pulse. The name thrystor was coined because the device is a solid-state
analogue of the thyratron. To start the conduction process in the p-n-p-n device, it
is necessary to increase the external voltage to reach the peak value Vp. However,
it is possible to switch from the blocking state to the conduction state by applying
a relatively small current to the gate. The dashed lines in Fig. 7.27a show the I-V
curves for two values of the gate current. The effect of the current entering the gate
is to inject holes in region p2, which being the base of the transistor n2-p2-n1, causes
the beginning of the conduction process. This produces injection of electrons from
n2 to n1, that turns the transistor p1-n1-p2 also conducting. This process triggers the
SCR, making it switch from the blocking to the conducting regime, without the need
to increase the external voltage up to the avalanche breakdown value. The effect of
the current in the gate is precisely to reduce the value of the peak voltage, as shown
in Fig. 7.27a. Once triggered, the SCR maintains the conduction process, even if the
gate current is interrupted. Thus, the SCR can be triggered by a current pulse at the
gate. On the other hand, a negative current pulse at the gate can cutoff the device,
making it switch from the conducting to the blocking state.

The circuit symbol of the SCR is shown in Fig. 7.27b. The SCR is used in a wide
variety of applications in industrial electronics and power control, because it makes
possible to control the power delivered to a load by means of low power switching.
Figure 7.28 illustrates a simple and very popular application of a SCR used to control
the voltage applied to a resistive load from a constant AC line source. The circuit,
shown in Fig. 7.28a, consists of a SCR in series with the load (resistance RL), in
which the gate is fed by current pulses with the same period as the line voltage but
with a variable delay. The pulses are produced by a simple oscillator synchronous
with the line, and with a delay that can be varied by means of a potentiometer. In
the negative half-cycles of the line voltage the SCR blocks the current through the
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Fig. 7.28 a Schematic circuit for the use of a SCR to control the power delivered to a resistive
load. b Wave forms of the line voltage, pulsed gate current, and voltage at the load
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load, and only when a current pulse is applied to the gate, the SCR switches to the
conducting state. This is illustrated in Fig. 7.28b, that shows the wave forms of the
line voltage, pulsed gate current, and voltage at the load. By changing the delay τ d

of the gate pulse one can vary the duration of the positive half-cycles in which the
SCR conducts, and hence the power delivered to the load. The circuit of Fig. 7.28 is
used in lightning dimmers.

7.7.2 The TRIAC

The triode for alternating current switching, or TRIAC, as the name says, is a device
to switchAC currents in either direction. It ismade of a semiconductorwith six doped
regions, constituting two SCRs connected in parallel and in opposite directions. The
structure of the TRIAC and its circuit symbol are shown in Fig. 7.29. In the structure
of Fig. 7.29a one can clearly identify two devices in parallel, one formed by the
regions p1-n1-p2-n2 and the other formed by the regions n4-p1-n1-p2. Without the
gate, they are equivalent two Schockey diodes in parallel and in opposite directions,
whose I-V characteristic is given by the solid line in Fig. 7.30. This device is called
a bidirectional diode, or diode AC switch (DIAC). It can conduct current in any of
the two directions, as long as the external voltage reaches the peak value ±Vp.

The gate terminal is used to trigger the TRIAC in any of the two directions by
means of current pulses. If the voltage between anode and cathode is positive, a
current pulse at the gate triggers the SCR p1-n1-p2-n2, producing a current from
anode to cathode. On the other hand, if the voltage is negative, the current pulse at
the gate makes the SCR p2-n1-p1-n4 conduct from cathode to anode. Note that in the
TRIAC the anode and cathode have similar roles and the distinct names is not even
justified. They are used only to facilitate the description.

TRIACs are widely used in electronic circuits for AC power control. They can be
built in such a way that both in the positive or in the negative cycles, the trigger is

Fig. 7.29 a Cross section of the TRIAC structure. b TRIAC circuit symbol
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Fig. 7.30 I-V curves for a
TRIAC with three values of
the gate current

made by positive or negative pulses, or by both. The current in the device is switched
offwhen the voltage between anode and cathode is cutoff. It can then let an alternating
current flow if it is triggered twice in each cycle. While the SCR can only be used to
control the power delivered to loads that operate with DC voltages, the triac is used
in circuits to control AC power.

7.8 Integrated Circuits

Most devices presented in Chaps. 6 and 7 can be encapsulated separately, featuring
twoormore external terminals, so that they canbe connected to other devices, forming
an electronic circuit. In this case, they are called discrete devices, or components.
However, by farmost semiconductor devices used in recent times aremanufactured in
integrated circuits. An integrated circuit (IC) is formed by a large number of transis-
tors, diodes, resistors, capacitors and inductors, manufactured in the same semicon-
ductor chip and interconnected with each other through metallic films, composing
a complete circuit with microscopic dimensions. The first integrated circuit was
produced in 1958, by Jack Kilby, and contained only a few transistors. This achieve-
ment was not a scientific breakthrough, it was an innovative way to connect devices
whose operating principles were already known. However, the concept of the inte-
grated circuit revolutionized electronics and set the stage for a social revolution and a
great advance in scientific equipment and science. For this reason,Kilbywas awarded
the Physics Nobel Prize in the year 2000.

The first integrated circuits had no more than a few dozen transistors. However,
in a short time the integration technology was dominated by several manufacturers
and the competition to gain markets led to a race to increase the number of devices
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in the same circuit. The result was a rapid increase in the integration capacity, with
the improvement in performance and decrease in manufacturing costs. At the end
of the 1960s, devices in integrated circuits had dimensions of some micrometers,
leading to the namemicroelectronics technology. At that time, Gordon Moore, one
of founders of Intel, since then one of the largest manufacturers of microprocessors,
noted that the number of transistors per circuit doubled every eighteen months, and
that the production cost fell by half in the same period. This observation came to be
known asMoore’s law, which has characterized the semiconductor industry for over
four decades. Moore’s law remains valid until today, and the number of transistors
in integrated circuits for microprocessors and other applications has surpassed ten
billion. However, the lateral dimensions of the devices have decreased so much
that they reach the scale of tens of nanometers, and the thickness of some layers
corresponds to a few atoms. This has led to predictions that by 2030 there will be a
considerable reduction in the rate of growth of integration, unless new phenomena
and new devices are discovered in the coming years. Scientific and technological
research of phenomena and material properties on the nanometer scale gave rise to
new fields of knowledge, nanoscience and nanotechnology.

7.8.1 Basic Concepts and Manufacturing Techniques

Integrated circuits (IC) are manufactured by means of several physical and chem-
ical processes, such as those described in Sect. 1.4 for making thin films, and the
ones described in Sect. 6.1 for lithography, diffusion, oxidation, etching, and ion
implantation. These processes are carried out simultaneously in many small pieces
of the same semiconductor wafer, so that the fabrication cost of each individual IC is
greatly reduced. Currently the microelectronic industry employs silicon wafers with
diameters that vary from 2 in. (51 mm) to 300 mm (11.8 in.), and efforts are under
way to introduce 450 mm wafers. ICs are produced in specialized semiconductor
fabrication plants, colloquially known as fabs. Figure 7.31a shows a photograph of
a technician inspecting a 150-mm silicon wafer after its processing for the fabrica-
tion of ICs, while Fig. 7.31b shows wafers various diameters. After processing, the
wafer is cut with a diamond saw or a laser into small pieces, squares or rectangles, of
dimensions that vary from 1 to 20mm, corresponding to individual ICs. Each of these
chips, as they are called, is then individually tested. Each approved chip is mounted
on a base, interconnected to the external pins through gold or silver leads, and finally
encapsulated with an insulating resin (epoxy type). The number of external pins can
range from four to a few hundred, depending on the sophistication of the circuit.
Figure 7.32 shows the external view of some typical integrated circuits.

Integrated circuits can be classified in several ways. Regarding applications, there
are basically two categories, analog, also called linear, and digital. When they are
manufactured in the same semiconductor wafer using the same technology, they
are called monolithic. When the circuit involves different types of technology, for
example interconnecting semiconductor devices with magnetic sensors, it is called
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Fig. 7.31 a A technician inspects a silicon wafer after processing for IC fabrication (Courtesy of
Ceitec Semiconductors). b Processed silicon wafers with diameters 2 in. (51 mm), 4 in. (100 mm),
6 in. (150 mm), and 8 in. (200 mm) (Wikipedia)

hybrid. Currently, more than 90% of monolithic circuits are made with single crystal
silicon. The other semiconductor most used in themanufacture of ICs is GaAs, which
finds an increasing number of applications at high frequencies.

Linear ICs are those that perform analog, or linear, functions. The most common
simple linear ICs are the operational amplifiers (set of amplifiers with large gain, high
input impedance, and low output impedance), voltage regulators, and switches. In
general, these circuits are made with bipolar transistors and are used as discrete
components in electronic circuits, or as part of an IC that performs complete
functions, such as a radio or TV receiver.

Digital ICs are those that process binary information, in the form of on or off
pulses.Digital ICs canbemadewith bipolar orMOS technology, but the latter is by far
themost used currently. As we saw in Sect. 7.6, the use of complementaryMOSFETs
makes possible to manufacture VLSI circuits with low energy consumption. These

Fig. 7.32 Typical external view of some integrated circuits: a Voltage regulator circuit. b Common
sixteen-pin IC enclosure. cMicroprocessor for computers and other equipment. The scale of figure
(c) is different from the other two, since the microprocessor has quite larger physical dimensions
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circuits are the basis of microprocessors and high-capacity memories, used in mobile
phones, tablets, notebooks, and large computers.

An important issue in integrated circuits is the electrical insulation between neigh-
boring devices, since the semiconductor material of the wafer allows the passage
of electric current from one device to another. In the case of MOS and MESFET
devices, this is not a problem, since the conduction is restricted to the region of the
channel, whichmakes the operation of each device to be independent of the neighbor.
However, in the case of bipolar transistors, precautions must be taken to isolate a
transistor from its neighbors. Several techniques are used for isolation. Conceptually,
the simplest andmost effective is the oxide dielectric insulation used in certain silicon
integrated circuits. The manufacturing process starts with the preparation of the Si
wafer, with small doping, forming a n-type substrate. Then, the diffusion of donor
impurities is made over the entire surface, so as to form a n+ layer. Then, through
a process of photolithography and acid corrosion, a channel is dug in the n+ layer,
until it reaches the n-substrate, surrounding the entire region where the device will be
manufactured. The substrate is then placed in an oven with an oxygen atmosphere,
producing an insulating oxide layer (SiO2), which covers the entire surface exposed,
including the inner surface of the channel. The next step is the deposition of a layer of
polycrystalline Si, which fills the channel, but also covers the entire surface. Finally,
the wafer is turned upside down and mechanically polished, in order to remove all
layers on the n+ epitaxial layer. The final result is a set of n+ regions forming islands,
surrounded by insulating channels (as in Fig. 7.35c, which will be explained later).
The desired devices are then manufactured on the islands and then interconnected by
means ofmetallic films deposited on the surface. An advantage of the dielectric isola-
tion process is the low parasitic capacitance among the neighboring devices and the
elimination of polarization voltages, necessary in the process that will be presented
below. The main disadvantage of this method is the large number of processing steps
and the need to use a mechanical polishing process.

A very common method of insulation is that of reverse biased junctions. The
basic idea of this method consists of forming islands, in which the devices are
manufactured, surrounded by reversed biased p-n junctions. Since the current in
a reversed biased junction is very small, the islands are effectively insulated electri-
cally from each other. Figure 7.33 illustrates the process for the fabrication of the
islands. Initially a n-type epitaxial layer is grown on the p-type silicon wafer (for
a p-n-p transistor it would be a layer p on substrate n). The next steps consist in
oxidizing the surface and by means of photolithographic processes and corrosion to
open windows in the oxide layer in the form of lines that define the islands. Through
the windows ones makes diffusion of p-type impurities, producing channels with
depth such that they reach the p-substrate. To reverse polarize the p–n junction and
produce the insulation of the islands it is necessary to apply a voltage by means of
metallic contacts.

An additional issue in integrated circuitswith bipolar transistors is the contactwith
the collector. In the discrete device of Fig. 7.2, the collector contact is located on
the opposite side of the emitter and base contacts. This cannot be done in integrated
circuits, since the interconnection of the device is made through metallic films in the
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Fig. 7.33 Illustration of the insulation method with reverse junctions. a p-type substrate with
epitaxial n-type layer. b p-type insulation channel reaching the substrate

form of lines on the top surface. Figure 7.34 illustrates two methods used to make
the collector contact in the same face of the emitter and the base contacts. In (a)
the collector is formed by the diffusion of a n+ region surrounding the base. In this
case, the conduction between emitter and collector is made laterally, which results
in high collector resistance. In applications that require low collector resistance, the
most used structure is that of the buried layer. In this structure the effective contact of
the collector is a n+ layer made by diffusion in the p substrate, before deposition of
the n-type epitaxial layer, as in Fig. 7.34b. The connection of the collector with the
buried layer is made by means of a n+ region, produced by diffusion, as illustrated
in Fig. 7.34c.

Fig. 7.34 Methods used to make the contacts in bipolar transistors in integrated circuit. a Contacts
for lateral operation. b, c Collector in buried layer
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Fig. 7.35 Illustration of the manufacturing steps for a n-p-n transistor in an integrated circuit

To conclude this section, we show in Fig. 7.35 the manufacturing steps of n-p-n
transistor in an integrated circuit. In (a) we see the n+ layers diffused in the p-type
substrate. In (b) we see the n-type epitaxial layer over the substrate, forming the
buried layers. Figure 7.35c shows the insulating channels, that can be made with
dielectrics or with reversed biased junctions. Finally, Fig. 7.35d shows the regions
of the emitter (n), the base (p), and collector contact (n+). To complete the circuit, a
metallic film is deposited on the surface, in the form of lines, establishing contacts
with the regions of interest through windows in the oxide layer. The terminals of
the circuit are then connected to the external pins and the assembly is encapsulated,
acquiring the external form such as those shown in Fig. 7.32.

7.8.2 Semiconductor Memory Devices

Among the most important components of electronic equipment are those that store
information, called memory devices. These devices were initially developed for
computers, for which they are essential components. However, in the last decades,
memories have been used in a wide variety of electronic equipment, which incor-
porate microprocessors in their systems. In these equipments memory devices are
essential for storing programs, or codes, or software, that make the system perform
its functions, as well as all kinds of information such as texts, images, videos, etc.
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There are two major types of memories for computers and other equipment,
namely, semiconductor devices and magnetic devices. Magnetic media store infor-
mation indefinitely, until it is erased or replaced. That is why they are called non-
volatile. In semiconductor memory devices the storage time depends on its type.
Some have storage times of a few milliseconds or less, and are called volatile, while
others can store the information for many years, and are considered non-volatile. The
main advantages of semiconductor memories are the high capacity, high speed of
recording and reading, and the fact that they do not need moving parts, like magnetic
and optical disks. Magnetic memories, which will be presented in Chap. 9, have
larger storage capacity and are non-volatile. Among the removable memory devices,
for transport or external storage, the most important currently are semiconductor
flash memories, magnetic tapes, disks, and cards, and optical disks (Chap. 8).

Semiconductor memory devices can be manufactured both with bipolar transistor
and MOS technologies. However, for over three decades the MOS technology has
completely dominated themanufacture of semiconductor memories, due to the larger
capacity of integration, lower cost, and lower energy consumption. The basic element
of MOS memories is the MOS capacitor, presented in Sect. 6.1. In the capacitor the
presence of charge represents bit 1, while no charge represents bit 0.

In general, the basic cells of semiconductor memories are constituted by MOS
capacitors andMOSFETs. In each cell, theMOSFET, called pass transistor, serves as
a switch to deliver and access charge in the capacitor. Figure 7.36a shows a schematic
illustration of one scheme for a simple memory cell formed by a n-channel MOSFET
in series with aMOS capacitor. The source (S) and gate (G) terminals of the transistor
are used for connections with the addressing electrodes, made by strips of metallic
films. The n+ region of the transistor drain is connected in series with the capacitor
formed by the p-type semiconductor of the substrate and the metallic film, separated

Fig. 7.36 Illustration of two schemes used for a semiconductor memory cell consisting of a
MOSFET in series with a MOS capacitor. The insulating layers are shown in brown color. a The
pass transistor delivers the charge to an adjacent planar MOS capacitor. b The capacitor is made
in a trench close to the pass transistor. The charge is stored in the inversion region surrounding the
trench
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by an insulating layer, that can be the oxide SiO2. It is also common to use a layer
of polycrystalline silicon (poly-Si) for the capacitor plate, instead of a metallic film.
The capacitor board terminal is in general connected to the ground of the circuit. The
p+ region at the right end of the figure is used to insulate the cell from the neighboring
element.

The capacitor charging process, that is, the storage of information corresponding
to bit 1, is done by the simultaneous application of two voltage pulses, one between
the source of the MOSFET and the ground, and another between the gate and the
ground. The values of the voltages peak levels should be sufficient to create an
inversion layer between the source and the drain of the MOS transistor and another
one under the MOS capacitor terminal. After application of the pulses, the inversion
layer in the transistor disappears, but the charge in the inversion layer of the capacitor
remains stored. This charge tends to disappear after a certain time due to the thermal
generation of carriers, which limits the storage time to a few milliseconds. This time
is long enough for the dynamic operation of amemory in equipmentwith clock period
much smaller than 1 µs, as is the case of equipment that operate with clocks in the
GHz region as in a dynamic random-access memory (DRAM). For the continuous
operation of the equipment, it is then necessary that the memory is periodically
“refreshed”, that is, that the capacitors of the cells with bit 1 are recharged before the
charge disappears. Naturally, the information is lost when the equipment is turned
off. Therefore, a memory with cells like the one in Fig. 7.36 is of the volatile type.

The need to have smaller memory cells to increase the packing density in
chips has motivated the development of approaches to increase the capacitance
while decreasing the capacitor surface area. One of these approaches, illustrated
in Fig. 7.36b, employs a trench capacitor instead of the planar capacitor. The trench
with straight walls, perpendicular to the plane of the figure, is made by reactive ion
etching. Then, by means of chemical vapor deposition (CVD), the trench is filled
with polysilicon, that plays the role of one of the capacitor plates, while the p-type
substrate is the other plate. The charge is stored in the inversion layer surrounding the
trench. Figure 7.36b also illustrates a scheme employed to isolate neighboring cells
that requires a smaller area than the one in Fig. 7.36a, that is called trench isolation.
In this case, after it is dug with ion etching, the inner walls of the trench are oxidized
to form an insulating layer, and then it is filled with polysilicon and covered by an
oxide layer.

Semiconductor memories are formed by integrated circuits containing a large
number of cells connected to a network of addressing electrodes. A typical circuit is
shown in Fig. 7.37. The network has the form of a matrix, in which the interconnec-
tions of rows and columns are calledword lines (WL) and bit lines (BL). Note that the
sources of theMOSFETs are connected to the bit lines and the gates are connected to
the word lines, while the capacitors are connected to the ground, allowing to charge
the capacitors as explained previously. This matrix arrangement allows to randomly
access a cell with any address, both for recording and for reading information. For
this reason, this type of memory is called random access memory (RAM). The
random access enables an operating speed, both for recording and for reading, much
faster than in serial access, characteristic of magnetic tapes and disks, in which it is
necessary to go through several addresses until reaching a specific desired address.
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Fig. 7.37 Illustration of a section of the integrated circuit of a random-access memory (RAM),
formed by a matrix array of memory cells, each containing a MOSFET in series with a MOS
capacitor, interconnected to an addressing network

It is possible to build non-volatile memories with semiconductors using several
MOS structures. Figure 7.38 shows a MOSFET structure in which there are two
gate electrodes. One of them is metallic, used for external contact, while the other,
called floating gate, is generally made of a layer of polycrystalline silicon, also
called polysilicon (poly-Si), that properly doped has good conductivity, surrounded
by the insulating oxide. In this structure, called floating-gate avalanche-injection
MOS (FAMOS), the charge may remain in the floating gate for several years. Charge
storage at the floating gate can be done by several processes. A common process
consists of applying a voltage to the drain junction, with sufficiently high value to
produce a strong reverse bias. This results in avalanche, producing a large acceleration
of electrons in the depletion region of the junction. If a relatively high voltage is also
applied to the gate terminal, a fraction of the electrons passes to the floating gate by
direct injection or by the tunnel effect through the thin oxide layer.

Fig. 7.38 Structure of a
FAMOS device used in
non-volatile semiconductor
memories
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Fig. 7.39 Classification of
semiconductor memory
devices

The use of a variety of structures makes possible to build many types of semi-
conductor memory devices, volatile or non-volatile, for countless applications.
Figure 7.39 shows a classification of memories, represented by their acronyms.
Volatile memories are of two types, static random-access memories (SRAM) and
dynamic random-access memories (DRAM). Dynamic memories are like those of
Figs. 7.36 and 7.37, presented above, that need to be refreshed periodically. The
static memories are those that retain the recorded information without the need to
be refreshed, as long as the device remains energized. This is done through bi-stable
circuits, also known as flip-flops, that can be switched from one stable electric state
to another one, representing bit 0 or bit 1.

The variety of non-volatile memories is larger, so they are subdivided in two
groups, ROM (Read Only Memory), used only for reading, and RAM, which can
be accessed either for writing or for reading. Strictly speaking, ROM memories are
also of the RAM type, because, as we saw earlier, this is a name used to designate
memories whose addresses can be accessed randomly. However, the name RAM is
used for devices with random access, both for recording and for reading informa-
tion. In memories called EEPROM (Electrically Erasable-Programmable Read Only
Memory) the information is used only for reading, but can be recorded or erased elec-
trically. The other main types of ROM memory are: PROM (Programmable Read
Only Memory), that is a device in which the information in each cell is recorded
permanently by a fuse type process; EPROM (Electrically Programmable Read Only
Memory), is amemory that uses FAMOSdevices inwhich the information is recorded
electrically. This is the most common memory for storage of the program that starts
the operation process of a computer, or other equipment containing microprocessors,
when they are turned on. Information in the EPROMmemory can be erased globally,
this is, at all addresses, by means of ultra-violet radiation or X-rays. The high energy
photons take the electrons from the floating gate to the control gate or the substrate.
For this reason, the encapsulations of EPROM devices have an opening with an optic
window at the top, to allow the radiation to pass through. Finally, the flash memory,
an abbreviation for the full name flash EEPROM, is a memory where information
is recorded electrically, as in the EPROM, but can be electrically globally erased
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at once, as in a flash. The flash memories are used in pendrives and other devices,
which serve to easily store and transport information. Before the development of
pendrives, about two decades ago, the main media used to store and transport infor-
mation outside personal computers were flexible magnetic disks, known as floppy
disks. The need to produce memories for several applications, with larger storage
capacity and with larger access speed, has boosted research and development of new
devices, new materials, and integration structures with increasingly sophisticated
technologies. These activities have provided a continuous improvement of memo-
ries and a permanent search for new devices, manufactured with semiconductors or
other materials, that enable the performance of unusual functions for new equipment
or for innovations in the electronic industry.

To conclude this section, we point out that modern IC fabrication techniques
employ several thin-film deposition processes of various materials, aiming at
increasing the number of devices per chip and improving performance and reliability.
Besides the pure and doped semiconductors, simple metals, and silicon dioxide, used
in earlier integrated circuits, high-density ICs make use of several other materials,
such as silicides, nitrides, and glasses, among others. Here we briefly present some
properties and applications of these classes of materials.

The silicides consist of the admixtures of silicon with some metals that form
stable metals and semiconductors. They are important in ICs with metallic inter-
connections of widths smaller than 1 µm because they have resistivity smaller than
doped polysilicon. Cobalt silicide (CoSi2), titanium silicide (TiSi2), and nickel sili-
cide (NiSi) have lower resistivities and are generally compatible with IC processing.
One important application of silicides is as the material for the MOSFET gate elec-
trode, used either alone or with polysilicon above the gate oxide in high-density
semiconductor memories.

Siliconnitride (Si3N4) is a veryhard insulatingmaterialwith good thermal stability
that is used with many purposes in several industrial sectors. In the microelectronic
industry it is used as an insulator and chemical barrier in manufacturing integrated
circuits, to electrically isolate different structures or as an etch mask in bulk micro-
machining. As a passivation layer for microchips, it is superior to silicon dioxide, as
it is a significantly better diffusion barrier against water molecules and sodium ions,
two major sources of corrosion and instability in microelectronics. It is also used as
a dielectric between polysilicon layers in capacitors in analog chips. In the fabrica-
tion of ICs, silicon nitride films can be deposited by a low-pressure CVD process
at intermediate temperatures (~750° C), or by plasma-enhanced CVD process at
lower temperatures (~300° C), depending on the properties desired. Silicon nitride
deposited byLP-CVD, also calledLP-nitride, experiences strong tensile stress,which
may crack films thicker than 200 nm. However, it has higher resistivity and dielectric
strength than most insulators commonly available in microfabrication. On the other
hand, silicon nitride deposited by PE-CVD, called PE-nitride, have much less tensile
stress, but smaller resistivity than LP-nitride. Thus, often both are used next to each
other to isolate the gate in MOSFETs and provide good mechanical stability.

Besides silicon oxide and silicon nitride, phosphorous-doped silicon dioxide, also
called phosphosilicate glass (PSG), and borophosphosilicate glass (BPSG), are often
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used as insulating materials for maknig thin films in the manufacturing of ICs. Both
PSG and BPSG can serve as a passivation layer against moisture penetration and
alkali metal contamination. However, the physical mechanism for blocking alkali
metal ions is different from that of silicon nitride. PSG and BPSG films can getter
alkali ions whereas silicon nitride serves as a diffusion barrier for alkali ions. PSG
and BPSG are used mainly as an insulating thin film to make a smooth topography
between layers. If the lower metal layer is concave or has a sharp shape, circuit
failure may result from an opening that may occur in the upper metal layer during
deposition. Since PSG and BPSG deposited at low temperatures become soft and
flow upon heating, they provide a smooth surface that effectively isolate adjacent
metal layers.

The use of these materials in IC devices with nanometer dimensions is illustrated
in Fig. 7.40, showing photographs of cross-sections of a silicon wafer, in the plane
perpendicular to the bit-line, of a high-density memory chip, obtained with scanning
transmission electron microscopy (STEM). Figure 7.40a shows two DRAM unit
cells, such as the one in Fig. 7.36b, each with a trench capacitor used for charge
storage and one MOS pass transistor. The isolation between the charge regions of
two neighboring cells is assured by the vertical shape of the capacitors and by the
triangular prism shaped isolation trench. Note that to save space, the two MOSFETs
share the same source, which is in contact with the bit line, while the two capacitors
are connected to two different word lines, not shown in the photographs. Figure 7.40b
shows a zoom of one MOSFET indicating the materials used for the source, gate,
and drain, as well as the PSG layer deposited over them to provide passivation and
isolation against moisture penetration and alkali metal contamination.

Fig. 7.40 Scanning transmission electron microscopy photographs of a cross-section of a silicon
wafer with a high-density memory chip. (a) Two memory cells, each with a n-MOS pass transistor
(T) and a trench capacitor (C). The two transistors share the same source in contact with a bit line.
The isolation between twomemory cells is made by a triangular prism shaped trench (TI). (b) Zoom
of one transistor indicating the materials of the various films used in the fabrication of the device
(Courtesy of Gunter Fischer, IHP Microelectronics, Germany)
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Asmentioned in the introduction of this section, the development of materials and
processes has made possible a continuous scaling down in size of the components of
ICs over the past decades. Typical MOSFET channel lengths were a few decades ago
of several micrometers, but modern integrated circuits are incorporating MOSFETs
with channel lengths of tens of nanometers, as clearly shown in Fig. 7.40. However,
the semiconductor industry maintains a roadmap which sets the pace for further
reductions in the size of MOSFETs. Historically, the difficulties with decreasing the
size of theMOSFET have been associated with the semiconductor device fabrication
process, the need to use very low voltages, and with poorer electrical performance
necessitating circuit redesign and innovation. Further reduction in size will depend
on the improvement of fabrication technologies in industry, as well as the discovery
of new phenomena, materials, and devices in academia in the coming years.

Problems

7.1 The variation in the concentration of holes in excess of equilibrium, δp (x), as
function of position x at the base of a p-n-p transistor is given by Eq. (7.15).
Plot curves of δpB(x)/�pE (preferably on a computer), for three base thick-
nesses, l = 2Lp, 0.5 Lp, and 0.1 Lp, where Lp is the diffusion length. Using
the plots, explain which thickness is the best for a good transistor.

7.2 Show that in a forward biased p+-n-p+ transistor, the base current is given by
Eq. (7.23).

7.3 Consider a p+-n-p+ symmetric transistor made of silicon, with the following
base parameters: l = 2 µm, A = 10−3 cm2, Nd = 5 × 1015 cm−3, and τ p =
0.5 µs. Considering that the emitter and the collector have Na = 5 × 1017

cm−3 and τ n = 0.1µs, calculate the emitter, base, and collector currents, with
the transistor polarized with VEB = 0.75 V and VCB = −10 V.

7.4 Calculate the parameters α, γ and β of the transistor of Problem 7.3.
7.5 Calculate the parameters IEs, ICs, αN , and αI of the transistor of Problem 7.3

and obtain the emitter and collector currents using Eqs. (7.37) and (7.38).
Compare the results with those of Problem 7.3.

7.6 Consider a p+-n-p+ symmetric transistor, that is, with the same parameters
for the emitter and the collector.

(a) Write the Ebers-Moll equations for the transistor.
(b) Obtain the current I as a function of V for the transistor in circuit (a)

of the figure below.
(c) Calculate VCB when the transistor is connected as in circuit (b) in the

figure below.
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7.7 A p+-n-p+ symmetric transistor made of Si has the following base parameters:
l = 1 µm, A = 10−3 cm2, Nd = 1015 cm−3, and τ p = 2 µs. The emitter and
the collector have Na = 5 × 1016 cm−3 and a diffusion length half the value
at the base. The other Si parameters at room temperature are given in Table
5.2.

(a) Calculate the saturation currents of the emitter and collector, IEs and
ICs.

(b) Write the Ebers-Moll equations for the transistor and calculate the
numerical values for the parameters IEs, ICs, αN , and αI .

7.8 Consider the p+-n-p+ transistor of Problem 7.7. From Eqs. (7.37) and (7.38),
obtain an equation for the collector current IC as a function only of the voltage
VCE and the base current IB. Use a computer and plot the curves for IC as a
function of−VCE , for different values of IB, and compare themwith Fig. 7.7b.

7.9 For the transistor of Problem 7.3, calculate the current I when it is connected
as in the circuit below, where V = 500 mV.

7.10 A p-n-p transistor with the I-V characteristic curves given in Fig. 7.7, is used
as an amplifier in a simple polarization circuit, as the one in Fig. 7.9a. If
EB = EC = 10 V and RC = 1 k� calculate:

(a) The value of RB so that the base current is 50 µA;
(b) The values of the currents IC and the voltage VCE ;
(c) The current gain of the circuit;
(d) The maximum voltage of the signal input for the circuit to operate in

the linear region.

7.11 Obtain the drain current equation for a JFET such as the one in Fig. 7.11,
corresponding to Eq. (7.43), without neglecting the contact potential V 0 of
the junctions.
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7.12 Obtain the expressions for the conductance and pinchoff voltage for a JFET,
neglecting the contact potential of the junctions but without the condition
Na � Nd used in the derivation of Eqs. (7.44) and (7.45).

7.13 A junction field effect transistor, like the one in Fig. 7.11, made of silicon,
has p+ regions with doping Na = 1018 cm−3 and channel with Nd = 2 × 1016

cm−3 and a half-width a = 0.8 µm.

(a) Calculate the pinchoff voltage Vp for channel formation assuming
V 0 = 0.

(b) What is the value of Vp if V 0 is not neglected?
(c) What is the value of VD at which the current saturates for VG = −2 V?

7.14 What is, approximately, the largest voltage gain of an amplifier circuit made
with a JFET with the characteristic curves of Fig. 7.13?

7.15 A GaAs MESFET has a potential barrier V 0 = 0.8 V and has a channel with
impurity concentration Nd = 1016 cm−3, mobility μn = 7 × 103 cm2/V s and
dimensions a = 0.7 µm, L = 15 µm, and D = 10 µm. Calculate:

(a) The channel conductance;
(b) The threshold voltage;
(c) The saturation drain current for VG = 0 and VG = −1.0 V.

7.16 A n-channel MOSFET is made with aluminum electrodes and p-type silicon
with impurity concentration Na = 2 × 1017 cm−3. The thickness of the SiO2

layer is 10 nm in the gate region, the charge density at the interface is Qi/A
= 10−4 C/m2, and the other relevant dimensions (Fig. 7.22) are L = 10 µm
and D = 300 µm. Calculate:

(a) The threshold voltage VT ;
(b) The saturation current for VG = 6 V;
(c) The Id - VD curve for VG = 4 V.
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Chapter 8
Optoelectronic Materials and Devices

Themain objective of this chapter is to introduce the physical principles of lasers and
photodetectors, as well as some of their applications. Initially we discuss the optical
properties of materials, since they are essential to understand the principles of the
devices. We present the classical treatment, that is useful for some basic properties,
and then the quantum theory of radiation, that is essential to understand the operation
of light emitting diodes, photodetectors, and lasers. These devices are described in
a manner that can be grasped by undergraduate students. Semiconductor lasers and
some of their applications are presented in more detail.

8.1 Optical Properties of Materials

Optical properties are those that characterize how materials respond to an external
optical radiation, absorbing, reflecting, emitting, or changing the polarization of light.
Some aspects of these properties are undoubtedly among the most easily identifiable
in materials. Since immemorial times it has been known that the brightness, color,
transparency, and opacity ofmaterials fascinate and intrigue humanity. It is an ancient
costume to use metals to manufacture mirrors and to use metals and natural minerals
for making jewelry and adornment objects.

Scientific studies of the effect of materials on light gained great impetus with
Newton’s optical experiments in the seventeenth century. Newton showed that when
passing through a glass prism, a beam of sunlight produced a multicolored strip. At
one end of the strip formed by the rays that suffer the slightest deviationwhen passing
through the prism is the red color, while in the other end is violet. Nowadays it is
known that the color sensation is produced in the brain, and results from the effect
of electromagnetic waves in a range of frequencies that interacts with the retina of
the human eye. Radiation with wavelengths around 400 nm produces the sensation
of the violet color, while at the other end of the spectrum, wavelengths of 700 nm
produce the sensation of the red color. Figure 8.1a shows the standard response of the
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Fig. 8.1 a Relative sensitivity of the human eye as a function of the light wavelength (Wikipedia).
b Variation of the refractive index of fused quartz with the wavelength

human eye as a function of the wavelength of visible light. The region where the eye
is most sensitive is around 555 nm, which corresponds to a yellowish-green color.
Figure 8.1b shows the wavelength dependence of the refractive index of fused quartz,
which is typical of transparent materials, and explains the separation of the white
light beam into various colors. At the violet color (shorter wavelength), the refractive
index is larger, resulting in larger deviation when passing through the prism. In the
red, the refractive index is smaller and therefore the deviation is smaller. The variation
of the refractive index with wavelength is due to the characteristics of the interaction
of radiation with matter, which will be studied in Sect. 8.2.

The visible region of the electromagnetic spectrum, with wavelength in the
700–400 nm range, corresponds to a photon energy in the range 1.7–3.1 eV. These
values are on the same order of magnitude as the energy gaps in several
semiconductors and also the energies of electronic transitions in atoms of several
elements. For this reason, in the last decades it was possible to develop
semiconductor devices that efficiently convert light into electric current, and vice
versa. This gave rise to the field of optoelectronics, the branch of science and
technology devoted to research and development of materials and devices that
employ light and electronic current to process analog and digital signals that form
the basis of optical communications. A related area, which is also developing
rapidly, is photonics, devoted to signal processing done entirely in optical devices.

In this chapter we shall study the main phenomena involved in the interaction of
electromagnetic radiation with matter, as well as its applications in optoelectronics
and semiconductor devices. Other devices based on the interaction of light with
different materials will be presented in Chap. 10.
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8.1.1 Electromagnetic Waves in Materials

The phenomena of reflection, refraction, and absorption of light in materials, can be
macroscopically described by means of Maxwell’s equations (2.1)–(2.4). In Chap. 2
these equationswere solved for planewaves in a perfectly insulatormedium, inwhich
there is no current induced by the fields. In this situation there is no absorption or
energy loss, so that the amplitudes of the fields �E and �H , given byEqs. (2.7) and (2.8),
do not vary during propagation. However, in real materials, metallic, semiconductor,
or even insulators, there is always some loss mechanism, so that the wave amplitude
decays during propagation. This loss can be described by a current density, related
to the electric field through the conductivity σ , �J = σ �E . In this case, the wave
equation for propagation in one dimension contains another term that is not present
in Eq. (2.6). From Eqs. (2.1)–(2.4) one can easily show that for ρ = 0, the electric
field varying only in the x-direction is described by (Problem 8.1)

∂2 �E(x, t)

∂x2
= με

∂2 �E(x, t)

∂t2
+ μσ

∂ �E(x, t)

∂t
. (8.1)

In the visible region of the electromagnetic spectrum, the magnetic effects are
negligible, so that we can considerμ = μ0. Replacing in Eq. (8.1) the harmonic field
solution (2.14), with �k in the x-direction we obtain

k2 = μ0ε ω2 + iωμ0 σ = εr

c2
ω2 + iωμ0 σ, (8.2)

where c = 1/(μ0 ε0)1/2 is the speed of light in vacuum and εr = ε/ε0 is the relative
permittivity of the material, often called dielectric constant. In a medium without
losses the ratio between k andω leads to the definition of the refractive index n, given
by Eq. (2.10). This definition can be generalized for a medium with losses, through
the complex refractive index

N (ω) =
(

εr + i
σ

ωε0

)1/2

. (8.3)

With this definition, Eq. (8.2) takes the same form as (2.10), namely,

k = ω

c
N (ω), (8.4)

since μ0c2 = 1/ε0. The complex refractive index was represented by N(ω) not to be
confused with the number of particles N and also to make explicit its dependence
on ω. This dependency does not arise only from ω that appears in the denominator
of the second term in (8.3), but also in the fact that ε(ω) and σ (ω) always vary
with frequency. In fact, it is precisely the variation of ε and σ with frequency that
determines the optical properties of materials, as we shall see later in this chapter.
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The advantage of introducing the complex refractive index is that all expressions
obtained in Chap. 2 can be used here with the simple substitution of the refractive
index n by the complex N(ω). Let us now write the complex refractive index in terms
of the real and imaginary parts

N (ω) = n + iκ. (8.5)

To relate the two parts of N (ω) with the parameters εr and σ of the medium, we
square Eqs. (8.3) and (8.5) and equate them

N 2(ω) = n2 − κ2 + i2n κ = εr + i
σ

ω ε0
.

As we shall see later, both εr and σ can be complex. Thus, setting εr = ε′
r + iε′′

r
and σ = σ ′ + iσ ′′, and replacing the two quantities in the equation above, we obtain
for the real and imaginary parts of N2 (ω)

n2 − κ2 = ε′
r − σ ′′

ωε0
, (8.6)

2n κ = ε′′
r + σ ′

ωε0
. (8.7)

To understand the meanings of n and κ, we substitute (8.5) in (8.4) and obtain for
the modulus of the wave vector

k = ω n

c
+ i

ωκ

c
≡ k ′ + ik ′′.

Using this expression in Eq. (2.14) we obtain for the electric field of a wave
propagating in the x-direction

�E(x, t) = Re
[ �E0 ei (ωn/c) x −iωt

]
e−(ω/c) κx

= �E0 cos[(ωn/c) x − ωt]e− (ω/c) κx . (8.8)

We see then that the field is described by a harmonic function whose amplitude
decays exponentially during propagation. Note that n, the real part of N(ω), is the
ratio between the speed of light c and the phase velocity vp =ω/k′ = c/n, and therefore
it is the refractive index itself. Only in the case of lossless medium (κ = 0) we have
n = (εr)1/2, as defined in Eq. (2.10).

Equation (8.8) shows that κ, the imaginary part of N(ω), produces an exponential
decay in the field amplitude. For this reason, it is called damping coefficient, or
extinction coefficient. To understand the meaning of κ, let us study what happens to
thewave energy. The quantity that expresses the energy carried by an electromagnetic
wave is the Poynting vector, defined by
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�S = �E × �H . (8.9)

It can be shown that the modulus of �S is equal to the energy per unit area and per
unit time carried by the wave. Using Eqs. (2.11)–(2.13), it is easy to show that for a
plane wave in a lossless medium, �S has the same direction as the propagation vector
�k and has a modulus given by (Problem 8.2),

S(�r , t) = n

cμ0
E2
0 cos

2(�k · �r − ωt + φ), (8.10)

which shows that S varies harmonically in time and space. In energy considerations
the most important quantity is its average, so the wave intensity is defined as the
average value of the modulus of the Poynting vector. Since the average value of
cosine squared is equal to 1/2, the wave intensity obtained with Eq. (8.10) is

I = 〈S〉 = n

2cμ0
E2
0 . (8.11)

This relationship shows that in a lossless medium, the intensity of a harmonic
plane wave is constant, that is, it does not vary in space or time. It is proportional to
the square of the electric field amplitude and it is equal to the average transported
energy, per unit area and per unit time. In other words, the intensity is the average
power per unit area. In the SI it is expressed in W/m2.

It is possible to relate the intensity of a light beam with the flow of photons. A
beam with intensity I and cross section area A has average power P = I A. Since
ω is the wave angular frequency, the energy of each photon is �ω. Therefore, the
photon flow 	, defined as the number of photons that go through a cross section of
the beam, per unit time and per unit area, is given by

	 = I

�ω
. (8.12)

Note that the number of photons per unit timedoes not vary along thebeambecause
the amplitude is constant. This result is not valid for a material with losses, in which
N(ω) has real and imaginary parts. In this case, the calculation of the Poynting vector
has a complicating factor in the lag between the fields E and H introduced by the
imaginary part of N(ω). However, it is easy to show that the intensity of a wave with
the field given by Eq. (8.8) varies in the space as follows (Problem 8.3),

I (x) = I (0) e−2(ω/c) κx ≡ I (0) e−α x . (8.13)

This expression shows that κ, the imaginary part of N(ω), produces along x an
exponential decay in the wave amplitude. The rate of decay is characterized by the
absorption coefficient, defined by
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α = −1

I

d I

dx
= 2

ω

c
κ. (8.14)

Note that the absorption coefficient has the dimension of inverse distance. Its
inverse, 1/α, is the characteristic distance of the wave intensity decay. Since the
amplitude of the electric field varies with the square root of the intensity, the
characteristic length of the field penetration in the material is given by

δ = 2

α
= c

ω κ
. (8.15)

Equations (8.6), (8.7) and (8.14) are valid for each value of the frequency ω. As
we shall see later, in any material all quantities defined in this section vary with ω.
In the visible region of the electromagnetic spectrum, insulators have σ = 0, and
therefore in crystalline form they are transparent (α = 0). However, in the ultraviolet
region, their conductivity is finite and they strongly absorb radiation. The increase in
absorption and in the dielectric constant in the ultraviolet region results in a gradual
increase in the refractive index with the frequency in the visible range. This is what
makes the refractive index of fused quartz to decrease with the wavelength (which
is inversely proportional to ω), as in Fig. 8.1b, and that produces the dispersion of
white light. This is also common to many other transparent materials.

8.1.2 Reflectivity of Materials

An electromagnetic wave incident on the surface of any material gives rise to a
reflected and a refracted wave. The laws of geometric optics relate the angles of
incidence, reflection and refraction, but give no information about the relative wave
intensities. To obtain the relationship between intensities, it is necessary to use the
boundary conditions at the surface obtained from Maxwell’s equations. Let us
consider the simple case of a wave with electric field �E1 = E1 ŷ (in vacuum or in
air), incident perpendicularly on the flat surface of a material with complex
refractive index N(ω), as illustrated in Fig. 8.2. The calculation of the reflected
�E2 = ŷE2 and transmitted (or refracted) �E3 = ŷE3 fields is very similar to the

Fig. 8.2 Illustration of
incident, reflected and
transmitted (refracted) waves
on the surface of a material

E2

E1

E3
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problem of an electron incident on a potential barrier (Sect. 3.3.3 and Problem 3.5).
The complex field in air, at x < 0, is

Ey = E1 ei(ω/c)x−iωt + E2 e−i(ω/c)x−iωt ,

while in the material, supposed to be semi-infinite, it is given by Eq. (8.8)

Ey = E3 ei(ω/c) N (ω)x−iωt .

To obtain E2 and E3 as a function of E1, it is necessary to use the boundary
conditions at the surface. The continuity of the tangential electric field at x = 0 gives

E3 = E1 + E2. (8.16)

To impose the continuity of the tangential component of the field H, we use
Eq. (2.13) with (εr )

1/2 replaced by N (ω). The result is,

N (ω) E3 = E1 − E2. (8.17)

From Eqs. (8.16) and (8.17) we obtain the amplitudes of the fields of the reflected
and transmitted waves

E2

E1
= 1 − N (ω)

1 + N (ω)
, (8.18)

E3

E1
= 2

1 + N (ω)
. (8.19)

The reflectivity R is defined as the ratio between the intensities of the reflected
and incident waves. Using Eq. (8.18) we obtain

R =
∣∣∣∣ N (ω) − 1

N (ω) + 1

∣∣∣∣
2

. (8.20)

With Eq. (8.5) we can write the reflectivity in terms of the real and imaginary
parts of N (ω)

R = (n − 1)2 + κ2

(n + 1)2 + κ2
. (8.21)

Note that R is a dimensionless quantity that is often expressed in percentage. For
example, ordinary glass has n = 1.5 and κ = 0, which gives R = 0.04, or R = 4%.
Equation (8.21) shows that the reflectivity depends on both the refractive index and
the extinction coefficient. In the case of metals, at frequencies below the visible
region, the absorption is very strong, so that κ >> n. In this case, the terms with n in
Eq. (8.21) can be neglected in the presence of κ2, so that R ≈ 1. Thus, the reflectivity
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approaches 100%, that is precisely one of the features of metals. It is easy to verify
that the transmission, defined as the ratio between the intensities of the transmitted
and incident waves, is related to R by T = 1 − R. This relationship also expresses
the conservation of energy in the process whereby a wave is incident on the interface
between two media.

Example 8.1 An electromagnetic wave with wavelength of 500 nm strikes the
plane surface of an intrinsic CdTe semiconductor sample. Considering that at
this wavelength CdTe has negligible conductivity and its dielectric constant has
real part ε′

r = 8.9 and imaginary part ε′′
r = 2.3 calculate: (a) The phase velocity

of the radiation at the given wavelength; (b) The absorption coefficient; (c) The
reflectivity; (d) The total transmission of a CdTe plate with parallel faces and
thickness 0.2 μm.

(a) To calculate the phase velocity, it is necessary to relate the refractive
index n with the real and imaginary parts of the dielectric constant. Making
σ = 0 and replacing (8.7) in (8.6) we obtain the equation for n

n2 −
(

ε′′
r

2n

)2

= ε′
r ,

which leads to the following biquadratic equation,

n4 − ε′
r n2 − ε′′2

r

4
= 0.

The positive solution of this equation is

n = 1√
2

[
ε′

r + (ε′2
r + ε′′2

r )1/2
]1/2

,

which gives

n = 1√
2

[
8.9 + (8.92 + 2.32)1/2

]1/2 = 3.01.

Thus

vp = c

n
= 3 × 108

3.01
= 9.97 × 107 m/s.

(b) The extinction coefficient is calculated by a similar procedure,

κ = 1√
2

[−ε′
r + (ε′2

r + ε′′2
r )1/2

]1/2
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κ = 1√
2

[−8.9 + (8.92 + 2.32)1/2
]1/2 = 0.38.

The absorption coefficient is given by (8.14)

α = 2ω κ

c
= 4π ν κ

c
= 4π κ

λ

thus

α = 4 × 3.14 × 0.38

500 × 10−9
= 9.55 × 106m−1 = 9.55μm−1.

(c) The reflectivity is given by (8.21)

R = (3.01 − 1)2 + 0.382

(3.01 + 1)2 + 0.382
= 0.258

Thus, the reflectivity of CdTe at 500 nm is 25.8%.
(d) To calculate the total transmission approximately, it is necessary to

consider the transmission at the two surfaces and along the thickness d of the
plate,

T = (1 − R)2e−αd = (1 − 0.258)2e−9.55×0.2 = 0.08.

Note that this calculation is only approximate, because rigorously one
should solve the full problem of a plate in air, considering the three regions of
space. However, since the attenuation of the wave inside the plate is
considerable, the approximate calculation is satisfactory.

8.2 Interaction of Radiation with Matter: Classical Model

In this section we study some interaction mechanisms of electromagnetic waves with
materials that can be described by classical physics. The objective is to understand
some basic phenomena with simple models that allow the calculation of εr(ω) and
σ (ω). As we saw in the previous section, these parameters determine n(ω) and κ(ω),
and therefore the optical properties of materials.

Initially, we discuss the interaction of radiation with free electrons, which plays
an essential role in the optical properties of metals. Then we shall study the classical
model of the interaction with bound electrons. To understand in detail the optical
properties of insulators and semiconductors, it will be necessary to consider the
quantum nature of this interaction, that will be studied in the following section.
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The interaction of radiation with a material results from the force that the electric
field of the wave exerts on the electric charges of electrons and ions. Since the
field oscillates at a certain frequency ω, it tends to create a harmonic motion of the
charges with the same frequency. However, this motion will only be significant if
the charges have a natural vibration mode with frequency close to that of the field.
For this reason, in the case of ions, the interaction with the electromagnetic field is
important only if it has frequency in the range 1–10 THz (4–40 meV), characteristic
of the optical vibration modes of the crystal lattice. For this reason, in insulators
and semiconductors, phonons dominate the optical properties in the far infrared.
However, in metals, the interaction of the field with free electrons dominates the
material response, and makes the reflectivity close to 1, as we shall see next.

In the near-infrared, visible, and ultraviolet regions, the motion of the ions is
negligible, so that the optical properties in these ranges are dominated by the
interaction of the electric field with the electrons, free or bound to the atoms. We
shall study various aspects of this interaction separately in two sub-sections.

8.2.1 Contribution of Free Electrons in Metals

In metals, the behavior of free electrons is determinant for the optical properties in
a wide range of frequencies. The motion of electrons under the action of the electric
field of a plane wave

E = E0 e−iωt , (8.22)

can be calculated with an extension of the concepts presented in Sect. 4.5, for time-
varying fields. Since−eE is the force that the field exerts on the electron, the electron
equation of motion is

m
dv

dt
+ m

τ
v = −e E0 e−iωt , (8.23)

where m, v, and τ are, respectively, the mass, velocity, and collision time of the
electron. The second term of (8.23) represents the damping in the electron motion
due to collisions with the lattice and with impurities. Replacing in (8.23) the solution
for the steady-state regime v = v0 exp (−iωt), we obtain

v0 = −e E0

−im ω + m/τ
. (8.24)

Considering N free electrons per unit volume, we obtain for the current density

J = −e N v0 e−iωt . (8.25)
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Substituting (8.24) in (8.25) and using the relation J = σE, we obtain for the
conductivity of the metal at the frequency of the electromagnetic wave

σ(ω) = N e2 τ

m(1 − i ωτ)
. (8.26)

This result is known as the conductivity of the Drude model. Note that by making
ω = 0 in Eq. (8.26), we obtain the DC conductivity given by Eq. (4.30), as expected.
Substituting (8.26) in Eq. (8.3) we obtain for the complex refractive index of metals

N 2(ω) = εc + i N e2 τ

m ω ε0(1 − i ωτ)
, (8.27)

where εc is the contribution to the dielectric constant of bound electrons. As we will
see later, this contribution is more important in the visible and ultraviolet regions
of the electromagnetic spectrum, and is approximately constant in the infrared. The
fact that σ (ω) is complex makes the expressions for the real and imaginary parts of
N (ω) relatively large and difficult to analyze. For this reason, we will analyze σ (ω)
only approximately in two limits, low and high frequencies.

In the low-frequency approximation, we make ωτ < < 1 in Eqs. (8.26) and (8.27).
In alkalimetals (Li, Na,K,Rb andCs) and noblemetals (Cu,Ag andAu), τ ∼ 10−13 s,
so that this approximation corresponds to ω << 1013 s−1. Thus, it is valid for the far
infrared region. In this region, neglecting iωτ in the presence of 1 in Eq. (8.26), we
see that σ (ω) = N e2τ /m = σ 0 is the DC conductivity given by (4.30). Hence, we
can write (8.27) in the form

N 2(ω) ≈ εc + i
σ0

ω ε0
. (8.28)

Using the values σ 0 ∼ 108 �−1 m−1 (see Fig. 4.17), (4πε0)−1 = 9× 109 Nm2/C2,
and ω ∼ 1012 s−1, we see that the imaginary part of N 2 (ω) in (8.28) is much larger
than the real part, which is εc ∼ 1. Thus, in the far infrared region metals have
complex refractive index N (ω) given approximately by

N (ω) ≈
(

σ0

ω ε0

)1/2

(i)1/2 = (1 + i)

(
σ0

2ω ε0

)1/2

Therefore, the real and imaginary parts of the refractive index are equal and much
larger than 1,

n = κ ≈
(

σ0

2ω ε0

)1/2


 1. (8.29)

Substitution of this result in Eq. (8.21) shows that the reflectivity is close to unity,R
≈ 1. This result explains why metals are almost perfect reflectors of electromagnetic
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waves with frequencies below the infrared region. They are not perfect reflectors
because a small fraction of the wave energy penetrates a thin layer in the surface, is
absorbed by free electrons and transformed into heat in the collision processes. This
is the skin effect, characterized by a penetration length, or skin depth, δ, given by
twice the inverse of the absorption coefficient. Replacing (8.29) in Eq. (8.15) and
using c = (ε0μ0)−1/2 we obtain

δ = c

ωκ
=

(
2

ω μ0σ0

)1/2

. (8.30)

For copper, at room temperature, with σ 0 = 0.6 × 108 �−1 m−1, Eq. (8.30) gives
δ = 0.066 mm at ν = 1 MHz, and δ = 6.6 μm at ν = 100 MHz.

In the high-frequency approximation, ωτ >> 1, valid for the near infrared, visible,
and ultraviolet regions, we can neglect the unity in the denominator of Eq. (8.27)
and write

N 2(ω) = εc

(
1 − ω2

p

ω2

)
, (8.31)

where

ω2
p = N e2

m ε0 εc
, (8.32)

is the square of the plasma frequency ωp of the metal. Its value in common metals
is on the order of 1015 Hz, corresponding to an energy of about 4 eV, situated at the
end of the visible range and the beginning of the ultraviolet. Equation (8.31) shows
that for ω < ωp, the refractive index N (ω) is pure imaginary, that is, n = 0 and
κ = [εc(ω

2
p/ω

2 − 1)]1/2. In this situation, the reflectivity, given by Eq. (8.21), is
exactly R = 1. For this reason, similarly to the behavior in the infrared, metals are
also good reflectors of radiation in the visible region. On the other hand, for ω > ωp,
N(ω) is real, and the absorption due to free electrons is null.

Figure 8.3 shows the variation in the reflectivity of silver, in (a) with the incident
photon energy, and in (b) with the wavelength on an enlarged scale to highlight
details in the visible region. Note that silver has reflectivity almost 100% in the
whole energy range from zero to the end of the visible region, so that it is a good
reflector over the entire spectrum of white light. The reflectivity drops sharply to
near zero in the vicinity of the plasma frequency in the near ultraviolet. For higher
energies, R exhibits other variations caused by transitions of bound electrons, that
will be studied in the next section. It is interesting to note that in the case of copper,
these transitions produce a variation in reflectivity within the visible region. In this
case, the reflectivity is high throughout the visible range, but it is higher in the red
region than in the blue. For this reason, the copper reflection has an orange color,
which contrasts with the “silver color” of silver.
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Fig. 8.3 Reflectivity of silver. (a) As a function of the photon energy of the incident electromagnetic
wave. Reprinted with permission from H. Ehrenreich et al., Phys. Rev. 128, 1622 (1962). Copyright
(1972) by the American Physical Society. (b) Dependence on the wavelength, on an enlarged scale

Example 8.2 The concentration of free electrons in silver is 5.86× 1022 cm−3

and the collision time is 3.8 × 10−14 s. Calculate: (a) The penetration length in
silver of an electromagnetic wave with microwave frequency, ν = 1 GHz; (b)
The penetration length of an argon laser beam with wavelength λ = 514.5 nm;
(c) The attenuation suffered by the laser beam passing through a silver film
with thickness of 10 nm, not considering the reflections.

(a) Initially, it is necessary to calculate the product ωτ . With the data given

ωτ = 2π × 109 × 3.8 × 10−14 = 2.38 × 10−3.

Since ωτ << 1, the penetration length can be calculated with Eq. (8.15).
Using the value of the conductivity of silver calculated in Example 4.3, σ 0 =
6.26 × 107 (�m)−1, we have

δ =
(

2

ω μ0σ0

)1/2

=
(

2

2π × 109 × 4π × 10−7 × 6.26 × 107

)1/2

δ = 2.01 × 10−6m = 2.01μm.

(b) The frequency of the argon laser is

ω = 2πν = 2π
c

λ
= 2π × 3 × 108

514.5 × 10−9
= 3.66 × 1015 s,

so that

ωτ = 3.66 × 1015 × 3.8 × 10−14 = 1.39 × 102.
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In this case,ωτ >> 1 and the complex refractive index is given by Eq. (8.31).
Considering εc = 1, the plasma frequency of silver, given by Eq. (8.32), is

ω2
p = Ne2

m ε0εc
= 5.86 × 1022 × 106 × 1.62 × 10−38 × 36π × 109

9.1 × 10−31
s−2,

ω2
p = 1.86 × 1032 s−2.

Thus, ωp = 1.36 × 1016 s−1 is larger than ω, which makes N(ω)2 negative
and therefore N(ω) is imaginary. From Eq. (8.31) we have

N = iε1/2c

(
ω2

p

ω2
− 1

)1/2

= i

(
1.86 × 1032

3.662 × 1030
− 1

)1/2

= i(13.9 − 1)1/2,

N = i 3.6.

Equation (8.5) shows that the imaginary part ofN is the extinction coefficient
itself. Thus, κ = 3.6, and the penetration length calculated with (8.15) becomes

δ = c

ωκ
= 3 × 108

3.66 × 1015 × 3.6
= 2.27 × 10−8 m,

δ = 22.7 nm.

(c) The beam attenuation in a distance d = 10 nm is

e2d/δ = e20/22.7 = e0.88 = 2.41.

This means that when passing through the silver film, the intensity of the
laser beam decreases by a factor of 2.41. The attenuation can also be expressed
in decibel

A = 10log102.41 = 3.83 dB.

8.2.2 Contribution of Bound Electrons

As mentioned earlier, the optical properties of the materials at energies of the order
or larger than 1 eV are mainly due to the transitions of electrons bound to atoms, or
valence electrons. The correct treatment of these transitions will be presented in the
next section and requires the use of quantum mechanics.

However, it is possible to understand certain aspects of the phenomenon with a
simple model due to Lorentz. In this model, based on the classical view of the atom,
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it is assumed that the application of an electric field results in the displacement of the
negative electronic shells relative to the positive nucleus, as illustrated in Fig. 8.4a.
This produces an electric dipole moment that contributes to the permittivity of the
material. The relative displacement of charges also creates a restoring electrostatic
force that influences themotion. In the linear approximation, this force is proportional
to the displacement, as in a harmonic oscillator. The simplified model shown in
Fig. 8.4b consists of a mass-spring assembly, in which a particle of mass m and
charge −e, equal to those of the electron, is under the action of a force produced
by the electric field of the radiation. For a harmonic time-varying electric field with
frequency ω, as in (8.22), the equation of motion of the electron is

m

(
d2x

dt2
+ �

dx

dt
+ ω2

0x

)
= −e E0 e−iωt , (8.33)

where x is the displacement of the electron relative to its equilibrium position, ω0 is
the resonance frequency of the oscillator, and � is the damping rate of the motion.
The first term in Eq. (8.33) is the electron acceleration, which multiplied by the mass
is equal to the sum of the forces. The second term is responsible for the damping
motion, and corresponds to a counter force proportional to the electron velocity. It is
similar to the second term of Eq. (8.23), however it is not the inverse of the collision
time because in the present case the electron is bound to the atom. Finally, the third
term is a spring restoring force that simulates the binding of the electron to the atom.
Denoting by k the spring constant, this force is −kx, where k = ω2

0 m. The solution
of Eq. (8.33) in the steady-state regime is

x(t) = −e E0

m(ω2
0 − ω2 − iω�)

e−iωt . (8.34)

The electron displacement, given by (8.34), produces in the atom an instantaneous
electric dipole with moment p = −ex. If there are N atoms in the material per unit
volume, the resulting polarization, which is the electric dipole moment per unit
volume, is P = − Nex. Recalling the relationship between the displacement vector,
the polarization, and the electric field, which defines the permissivity

Fig. 8.4 a Illustration of the
classical effect of an external
electric field E on the charges
in an atom. b Simplified
model of the atom under the
action of the electric field
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�D = ε0 �E + �P ≡ εrε0 �E, (8.35)

we obtain for the dielectric constant at a frequency ω

εr (ω) = 1 + ω2
p

ω2
0 − ω2 − iω�

,

where ω2
p = Ne2/mε0. Note that the value of εr in this equation tends to 1 when

ω → ∞. In fact, this does not happen, since this result represents only the
contribution of one bound electron. The contribution of the other electrons with
larger oscillator frequencies causes the real part of εr at high frequencies to be
larger than 1. Representing this contribution by ε∞, we can write the dielectric
constant at frequencies close to ω0 as

εr (ω) = ε∞ + ω2
p

ω2
0 − ω2 − iω�

. (8.36)

From Eq. (8.36) we obtain the real and imaginary parts of the dielectric constant

ε′
r (ω) = ε∞ + ω2

p(ω
2
0 − ω2)

(ω2
0 − ω2)2 + ω2�2

, (8.37)

ε′′
r (ω) = ω2

p ω �

(ω2
0 − ω2)2 + ω2�2

. (8.38)

The variations with frequency of the two components are shown in Fig. 8.5 for
ωp = 0.7 ω0, � = 0.05 ω0, and ε∞ = 2.0. Note that the real part of εr (ω) is
negligible throughout the whole frequency range, except in the vicinity of the
resonance frequency ω0. Since the imaginary part of εr (ω) is related to the optical

Fig. 8.5 Variation with frequency of the real and imaginary parts of the dielectric constant in the
classical model of the radiation-electron interaction, calculated with Eqs. (8.37) and (8.38) using
ωp = 0.7 ω0, � = 0.05 ω0, and ε∞ = 2.0
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absorption in the material, as in Eqs. (8.7) and (8.14), this result means that there is
absorption only at ω ≈ ω0. This same conclusion is reached with the quantum
treatment of the interaction of radiation with the material, where �ω0 is the energy
separation between the two electronic quantum levels.

The graphical representation of the function that describes ε′′
r (ω) is called

absorption lineshape. Since for � << ω0, ε′′
r (ω) is significant only at frequencies ω

≈ ω0, we can make ω0 + ω ≈ 2ω0 ≈ 2ω in Eq. (8.38) and rewrite ε′′
r (ω) in the form

ε′′
r (ω) ≈ ω2

p �/4ω0

(ω0 − ω)2 + (�/2)2
≡ π ω2

p

2ω0
fL(ω), (8.39)

where

fL(ω) = �/2π

(ω0 − ω)2 + (�/2)2
, (8.40)

is the Lorentzian function. The constant 2π used in the definition makes the area
under the curve equal to unity,

∫
fL(ω)dω = 1. The maximum value of this

function occurs at ω = ω0, f L(ω0) = 2/(π�), and therefore the peak value is
inversely proportional the damping rate �. On the other hand, the linewidth,
defined as the difference between the two frequencies for which f L(ω) = f L(ω0)/2,
is precisely � (Problem 8.7). Thus, a small damping rate results in a small
linewidth and large peak absorption. This same result will be obtained in the next
section by a quantum treatment of the radiation-bound electron interaction.

It is important to note that ε′
r (ω) has the form of the derivative of ε′′

r (ω) with
respect to the frequency ω. This is not just a coincidence, it is the consequence of a
general result by which ε′′

r (ω) is given by the integral of a function related to ε′
r (ω),

and vice versa. These integral equations are called Kramers–Kronig relations that
apply to the real and imaginary parts of εr (ω), and are valid for any mechanism
of the radiation-matter interaction. Finally, to conclude this section, let us find the
optical constants of a material described by the classical model for bound electrons.
Making σ = 0 and replacing Eq. (8.7) in (8.6), we obtain biquadratic equations for
the refractive index n and for the extinction coefficient κ, as shown in Example 8.1,

n = 1√
2

[
ε′

r + (ε′2
r + ε′′2

r )1/2
]1/2

, (8.41)

κ = 1√
2

[−ε′
r + (ε′2

r + ε′′2
r )1/2

]1/2
. (8.42)

Figure 8.6a shows the functions n(ω) and κ(ω) obtained with Eqs. (8.37)–(8.42)
with the same parameters used in Fig. 8.5. Note that the refractive index is close to 1
in most of the frequency range, except in the vicinity of the resonance frequency ω0,
where it exhibits a pronounced anomaly. On the other hand, the extinction coefficient,
responsible for the wave attenuation, is negligible in most of the frequency range but
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Fig. 8.6 a Variation with frequency of the refractive index n and the extinction coefficient (or
damping) κ, calculated with Eqs. (8.37)–(8.42), using the same parameters used in Fig. 8.5.
b Reflectivity calculated with Eq. 8.21

it peaks at ω = ω0. Finally, it is important to note that the refractive index increases
with frequency in the region ω < ω0, as evidenced in the curve of n(λ) for fused
quartz, shown in Fig. 8.1b. This is what produces the dispersion phenomenon in
transparent materials. This is so because the frequencies of electronic transitions
of these materials are above the visible range. From n and κ, we can calculate the
reflectivity R of the material using Eq. (8.21). The plot of R(ω) obtained from n(ω)
and κ(ω) in Fig. 8.6a is shown in Fig. 8.6b. Clearly, the reflectivity has a peak at a
frequency slightly above ω0 and has a lineshape wider than those of ε′′

r (ω) and κ (ω),
because there is also an important contribution to the dispersion from n(ω).

Note that in real materials there are several electronic transitions with different
frequencies, and therefore R(ω) presents several peaks. It is one of these peaks at an
energy close to 2 eV that gives copper the orange color.

Example 8.3 A dielectric material has an absorption line due to an infrared
phonon with angular frequency ω0 = 2 × 1014 s−1, linewidth � = 1013 s−1,
and plasma frequency ωp = 0.7 ω0. Considering that ε∞ = 2.0, calculate the
absorption coefficient and the reflectivity of the material for an infrared beam
with frequency equal to that of the absorption peak.

Initially, it is necessary to calculate the real and imaginary components of
the dielectric constant. Using Eq. (8.37) with ω = ω0 one has ε′

r = ε∞ = 2.0.
Using (8.38) with ω = ω0 we have

ε′′
r (ω0) = ω2

p

ω0�
= 0.72 × 2 × 1014

1013
= 9.8.
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The refractive index n and the extinction coefficient κ are calculated with
Eqs. (8.41) and (8.42)

n = 1√
2

[
2 + √

4 + 96
]1/2 = 2.45,

κ = 1√
2

[
−2 + √

4 + 96
]1/2 = 2.0.

.
The absorption coefficient, given by Eq. (8.14), is

α = 2 × 2 × 1014 × 2.0

3 × 108
= 2.67 × 106 m−1.

The reflectivity, given by Eq. (8.21), is

R = (2.45 − 1)2 + 2.02

(2.45 + 1)2 + 2.02
= 6.10

15.9
= 0.38.

Note that the values obtained for εr , n, κ, and R, coincide with the values in
Figs. 8.5 and 8.6 at ω = ω0. Note also in Fig. 8.6 that the peak in R does not
occur exactly at ω0, as pointed out earlier.

8.3 Quantum Theory of the Radiation-Matter Interaction

In the previous section we made the assumption that electrons behave like classical
particles, bound to the atom by a harmonic-oscillator type force. This model led to
the result that the optical absorption occurs when the frequency of the radiation field
is approximately equal to that of the oscillator resonance. We know, however, that
in quantum mechanics the electron is described by a wave function, whose modulus
squared represents the probability of finding it in a certain position. Now we need to
understand how the quantum nature of the electron influences the absorption of light
by the material.

As we shall see below, the result of the quantum interaction of light with a two-
level system is consistent with that of the classical model. However, there are various
aspects of this interaction that are not contained in the classical model and which are
essential for the understanding of certain optical properties of materials, such as, for
example, the interband transitions and the stimulated emission of light.
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8.3.1 Transitions Between Discrete Levels

Let us first consider a system in which an electron can occupy states with discrete
energy levels. The systemcan be an electron in an infinite potentialwell, or in an atom,
for example. As we saw in Chap. 3, if the potential to which the electron is subjected
to does not vary in time, the electron can occupy stationary states characterized by a
quantum number n, described by wave functions of the type

�(�r , t) = ψn(�r) e−i(En/�) t . (8.43)

In this case, the expectation value of any operator, given by Eq. (3.14), does not
vary in time. Thus, the electron remains in this state indefinitely and its energy En

is constant. Let us see what happens if the electron is in a state given by the linear
combination of two stationary states, for example

�(�r , t) = ψ1 e−i(E1/�) t + ψ2 e−i(E2/�) t . (8.44)

This equation can be rewritten in the form

�(�r , t) = e−i(E1/�) t
[
ψ1 + ψ2 e−iω21 t

]
. (8.45)

where ω21 = (E2 − E1)/�. With the definition (3.14), we can write the expectation
value of any operator F in the state (8.45) as

〈F(t)〉 = 〈F〉1 + 〈F〉2 +
∫

ψ∗
1 Fψ2e−iω21 t dV +

∫
ψ∗

2 Fψ1eiω21 t dV

where 〈F〉1 and 〈F〉2 are the expectation values of F in the stationary states 1 and 2,
which are constant. If F is a Hermitian operator, that is

∫
ψ∗

2 Fψ1 dV =
(∫

ψ∗
1 Fψ2 dV

)∗
≡ |F12| eiϕ,

then we have

〈F(t)〉 = 〈F〉1 + 〈F〉2 + 2 |F12| cos(ω21 t + ϕ). (8.46)

This result shows that if the electron is in a state that is a combination of states with
energies E1 and E2, the expectation value of an operator varies harmonically in time
with angular frequency ω21 = (E2 − E1)/�. One can show, without difficulty, that
the probability of finding the electron in state 1, or in state 2, also varies harmonically
in time with frequency ω21. We say that the electron undergoes transitions from state
1 to state 2, and vice versa. For an electron that is initially in state 1, or 2, to undergo
transitions between 1 and 2, it is necessary to have an external action that varies in
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time with frequency ω close to ω21. Using quantum mechanics, we shall see below
how to calculate the probability for these transitions to occur.

Consider an electron in an atom, or in any potential well, subjected to an external
time-dependent disturbance. This disturbance can be the force of the electric field of
an electromagnetic wave, for example. Schrödinger’s Eq. (3.24) for the electron is
then

[
H0 + H′(t)

]
� = i�

∂�

∂t
, (8.47)

where H0 is the constant Hamiltonian corresponding to the potential well and H′(t)
represents the time-varying interaction due to the external disturbance. Usually the
perturbation is small, that is, the external disturbance is much smaller than the
interaction that keeps the electron in the well. As we know that the effect of the
disturbance is to cause transitions between electronic states, we look for solutions
to Eq. (8.47) in the form of an expansion in eigenfunctions ψn of the unperturbed
Hamiltonian H0, which we consider known, in the form

�(t) =
∑

n

an(t) ψn e−i(En/�) t . (8.48)

In order to obtain the coefficients an(t) that determine the wave function, we
substitute (8.48) into (8.47) and use the equation H0�n = En �n. Then we have

∑
n

an(t) [En + H′(t)]ψn e−i(En/�) t = i�
∑

n

(
dan

dt
− i

En

�
an

)
ψn e−i(En/�) t .

With the cancellation of the terms in En on both sides, and switching the left and
hand sides, this equation becomes

i�
∑

n

dan

dt
ψn e−i(En/�) t =

∑
n

an(t)H
′(t)ψn e−i(En/�) t .

Multiplying both sides to the left by ψ∗
m e−i(Em/�) t , integrating in the volume,

and using Eq. (3.13) that expresses the normalization and orthogonality of the
eigenfunctions, we obtain for the coefficients of the expansion in (8.48)

dam

dt
= 1

i�

∑
n

an(t) ei(Em−En) t/�

∫
ψ∗

m H′(t) ψn dV . (8.49)

Since no approximation has been made so far, this equation is entirely
equivalent to the time-dependent Schrödinger equation and is exact. It is the basis
of the matrix formulation of quantum mechanics. Now let us consider that the
disturbance is produced by a time-harmonic field with frequency ω, so that
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H′(t) = H′ e−iω t . (8.50)

Thus, Eq. (8.49) takes the form

dam

dt
= 1

i�

∑
n

an(t)H
′
m n ei (ωm n−ω) t , (8.51)

whereωm n = (Em −En)/� andH′
mn is thematrix element of the operator H′ between

the states m and n, defined by

H′
mn =

∫
ψ∗

m H′ ψn dV . (8.52)

Equation (8.51) can be used to calculate the time evolution of the state of the
system due to the perturbationH′exp(−iωt). Let us assume that an electron is initially
in a discrete state n of a Hamiltonian H0, when a small external perturbation of
the type (8.50) is applied. From Eq. (8.51) one can calculate the coefficient am(t)
corresponding to a state m at an instant t and therefore the probability of finding
the electron in this state, given by |am|2. It can then be shown (Appendix A) that the
probability per unit time for the electron to undergo a transition to a set of states
m very close to each other is given by

Wmn = 2π

�

∣∣H′
mn

∣∣2 D(Em = En + �ω). (8.53)

where D is the density of states with energy Em = En + �ω. Equation (8.53) is
called the Fermi golden rule of perturbation theory. In the case that the transition
between two energy levels is broadened due to the effect of damping, the density
of states is given by a Lorentzian lineshape. In the case of a transition between two
electronic energy bands, the density of states to be considered has the shape of the
one in Fig. 4.10.

8.3.2 Light Absorption and Luminescence

In this sectionwe use quantummechanical perturbation theory to calculate the effects
of the interaction of an electromagnetic wave with a system of atoms. Initially we
consider a set of N independent atoms (per unit volume), with energy levels E1, E2,
E3, etc. This is the situation that occurs in gases or in transitions between discrete
levels in solids. When the system is in thermal equilibrium at a certain temperature
T, electrons undergo transitions from one level to another due to the interactions
with thermal phonons, in the case of solids, or atomic collisions, in the case of gases.
However, while electrons in a certain number come out of a certain level, other
electrons in equal number arrive at that level (in other atoms), in order to maintain
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the thermal equilibrium distribution of the system. In statistical mechanics it is shown
that, in thermal equilibrium, the populations Ni and Nj at the energy levels Ei and
Ej (Ni is the number of atoms per unit volume with electrons at level Ei) obey the
relation

Ni

N j
= e−Ei /kB T

e−E j /kB T
= e−(Ei −E j )/kB T . (8.54)

This is the Boltzmann distribution, which applies to a system of distinguishable
particles, which in the present case is the collection of atoms.According to Eq. (8.54),
the population of a certain level i decreases exponentially with increasing energy Ei,
or with decreasing temperature. This is an expected result, because it is the thermal
excitation that takes electrons from a certain state to other states with higher energy
levels.

The presence of an electromagnetic field in the system tends to produce transitions
between energy levels whose separation is close to the energy of the photons �ω.
Equation (8.53) shows that the transition probability induced by the field from level
m to level n is equal to that from n to m. Thus, the tendency of the radiation is to
make the populations Nn and Nm approach each other. However, this equality would
only occur if the field intensity were high enough to overcome the role of thermal
excitation. This effect is important in the case of lasers. In this section we assume
that the field is small and that the thermal equilibrium is not disturbed.

Let us use quantum theory to calculate the optical parameters of a system of atoms,
considering, to simplify, that they have only two energy levels, E1 and E2 (E2 > E1),
with populations N1 and N2. When an electric field

�E = ŷ E e−i ω t

is applied to the system, electrons are subjected to an interaction with energy−eφ(y)
= eEy, which results in a perturbation Hamiltonian given by

H′(t) = e E y e−i ω t ≡ −E py e−i ω t ,

where py =−ey is the y component of the electric dipolemoment operator. According
to the Fermi golden rule (8.53), the transition probabilities, per unit time, for the
system to go from level 1 to level 2, or vice versa, are given by

W12 = W21 = 2π

�
E2 p2

12 D(E2 − E1 = �ω), (8.55)

where p12 is the matrix element of the py operator between states 1 and 2 (we omit the
index y to simplify the notation). If there are N1 electrons in the lower energy level
(per unit volume), the power absorbed from the electromagnetic field by the system
is N1 W12 �ω, because N1W12 is the number of photons absorbed per unit time and
per unit volume. On the other hand, N2 W12 �ω is the power emitted by electrons
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Fig. 8.7 Electronic transitions in a two-level system, by absorption (a) and by emission (b) of
photons

that go from level 2 to level 1 by the emission of photons. The photon absorption
and emission processes by electronic transitions in a two-level system are illustrated
in Fig. 8.7.

The net power per unit volume absorbed by the system is then

P = 2π

�
(N1 − N2)E2 p2

12 D(�ω) �ω.

Note that the absorbed power per unit volume can be identified as −dI/dx, since
the intensity I of the wave is the transmitted power per unit area. Thus, using Eqs.
(8.11) and (8.14) in the relation dI/dx = − P and noting that D( �ω) = D( ω)/�,
we obtain for the extinction coefficient

κ = 2π

n � ε0
(N1 − N2) p2

12 D(ω). (8.56)

Considering for D(ω) a Lorentzian lineshape f L(ω) given by (8.40), substitution
of Eq. (8.56) into (8.7) provides the imaginary part of the dielectric constant

ε′′
r = 2

� ε0
(N1 − N2) p2

12
�

(ω21 − ω)2 + (�/2)2
. (8.57)

where ω21 = (E2 − E1)/�. This expression has the same form as Eq. (8.39) with
ω21 replaced by ω0, and ω2

p/4ω0 replaced by 2(N1 − N2)p2
12/�ε0 (see Problem 8.8).

This shows that the classical result is consistent with quantum theory, as anticipated.
However, there are important details of the quantum result that do not appear in the
classical treatment. From Eq. (8.57) we conclude that to have absorption of energy
in electronic transitions between two levels E1 and E2, it is necessary that: (1) The
frequency of the radiation is ω ≈ (E2 − E1)/�; (2) The population of the lower level
is larger than of the upper level, that is,N1 − N2 > 0; (3) Thematrix element p12 of the
electric dipole moment operator between the states of the two levels is different from
zero. This last condition gives rise to the selection rules for electric dipole transition
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that determine which transitions are possible by absorption or emission of photons.
As mentioned in Sect. 3.4, the selection rules for transitions in the hydrogen atom
with linearly polarized field are �l = ± 1 and �ml = 0 (Problem 8.10).

The process of absorption of light, that we have just treated, occurs when an
electromagnetic radiation interactswith a systemof atoms producing transitions from
lower energy quantum levels to higher energy levels. Another very important optical
process is the spontaneous emission of radiation, which occurs when atoms pass
from an excited state to another lower energy state, even in the absence of external
radiation. The probability per unit of time for spontaneous emission with transition
from level 2 to level 1, as in Fig. 8.7b, is also given by Eq. (8.55). However, in this
case the field E that appears in (8.55) is that associated with the quantum fluctuations
of the ground state of zero photons. If there is an electric dipole moment between
states 1 and 2, the transition from 2 to 1 occurs with the emission of a photon, and
is called radiative transition. The characteristic time of this transition is given by
τR = 1/W12. If the dipole moment between the two states is zero, the transition from
2 to 1 can also occur, but in this case, instead of emitting only a photon, there is
also emission of a phonon or some other elementary excitation, with much lower
transition probability. This kind of transition is called non-radiative.

The process by which atoms are excited to higher energy states, and
subsequently decay through radiative transitions, is called luminescence. Among
the various mechanisms that produce luminescence in materials, the most important
are photoluminescence and electroluminescence. Photoluminescence is one in
which the atoms are taken to excited states through the absorption of photons of
larger energy. This process is important in solid-state lasers with impurities, which
will be presented in Sect. 8.6.2. Electroluminescence is the process by which the
light emission is caused by an electric stimulus, like the passage of an electric
current, such as the one that occurs in light emitting diodes and diode lasers, or by
the incidence of an electron beam, or by the application of an intense electric field.

8.3.3 Absorption and Emission of Light in Insulators
and Semiconductors

In the case of crystals, the quantum treatment of the radiation-matter interactionmust
take into account the fact that electrons are described by wave functions with wave
vector �k. In addition, they have energy E (k) in the form of bands and not discrete
levels, as in the previous section. The application of the Fermi golden rule (8.53) for
crystals with energy bands in the reduced scheme to the first Brillouin zone shows
that the electronic transitions between bands must conserve energy and momentum.
In the case of transitions involving only photons the conservation equations are

E f − Ei = ± �ω, (8.58)
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�k f − �ki = ± �k, (8.59)

where Ei and Ef are the electron energies in the initial and final states, respectively,
�ki and �k f are the corresponding wave vectors, ω and �k are the frequency and wave
vector of the photon absorbed (Ef > Ei) or emitted (Ef < Ei) in the transition. For
photons in the visible region, k ≈ 105 cm−1, so that it is negligible compared to
the values at the Brillouin zone edges. Thus, the electronic transition between bands
occurs with kf ≈ ki. Figure 8.8 shows two absorption transitions between the valence
and conduction bands in a direct gap insulator or semiconductor. The transition with
minimum energy is the one that occurs at the zone center, kf = ki = 0, and with
photons of energy equal to the gap, ωg = Eg/�. Photons with energy smaller than
Eg go through the material without causing absorption transition between the bands.
On the other hand, photons with ω > ωg are easily absorbed because there is a
large number of electronic states with kf = ki > 0. Using Eq. (8.53) to calculate the
probability of transition between the valence and conduction bands, with density of
states given by Eqs. (5.12) and (5.13), it can be shown that the absorption coefficient
in a direct gap semiconductor varies with frequency in form,

α(ω) ∝ (�ω − Eg)
1/2/ω, (8.60)

for �ω > Eg , and α (ω) = 0 for �ω < Eg . This expression, illustrated in Fig. 8.9,
shows that the absorption coefficient increases rapidly withω above the critical value
ωg = Eg/�, due to the increase in the density of states.

In indirect gap semiconductors, the transitions are more complicated. As
illustrated by the arrow in Fig. 8.10, the transition of an electron from the top of the
valence band to the minimum of the conduction band in an indirect gap
semiconductor, such as silicon and germanium, requires a major change in the
wave vector. This cannot be done only with the absorption of a photon, since it has
k ≈ 0. However, this transition can occur with the absorption of a photon with

Fig. 8.8 Photon absorption
in direct gap semiconductors.
The photon with minimum
energy that is absorbed has
frequency ωg = Eg/�
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Fig. 8.9 Variation with the
photon frequency of the
absorption coefficient in a
direct gap semiconductor

energy �ω and negligible wave vector (k ≈ 0), accompanied by the absorption of a
phonon with energy �� and wave vector �k, or the emission of a phonon with
energy �� and momentum −�k. In this case, the equations for conservation of
energy and momentum are

E f − Ei = �ω ± � �, (8.61)

�k f − �ki = ± �k, (8.62)

where the + and − signs in Eq. (8.61) correspond, respectively, to the processes of
absorption and emission of a phonon. Note that in the case of the phonon absorption
process, the minimum energy of the photon needed to produce the transition is
Eg − ��, while in the case of the phonon emission process the minimum energy is
Eg +��. However, indirect gap semiconductors can also have a direct gap transition
(k ≈ 0) from the maximum of the valence to a relative minimum of the conduction
band, with energyEg + E′, as illustrated in Fig. 8.10. Since the indirect gap transition
involves three elementary excitations, its probability is smaller than in the direct

Fig. 8.10 Electronic
transitions from the top of
the valence band to two
minima of the conduction
band in an indirect gap
semiconductor such as Si.
The indirect transition
involves phonons and has
energy Eg. The direct
transition has energy Eg + E’
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Fig. 8.11 Variation of the absorption coefficient with frequency in an indirect gap semiconductor

process in which phonons do not participate. For this reason, the combination of
indirect and direct processes results in an absorption coefficient that varies with
frequency as illustrated in Fig. 8.11.

Since the phonon energy (0.05–0.1 eV) is much smaller than typical values of
the energy gap (Eg ∼ 1 eV), in a first approximation the threshold energy below
which the intrinsic semiconductor (or insulator) does not absorb photons by
interband transition is Eg. On the other hand, photons of energy larger than Eg are
strongly absorbed resulting in the generation of electron-hole pairs. This process
makes possible the use of semiconductors in detectors of electromagnetic radiation.
The reverse process by which photons are emitted in the recombination of
electron-hole pairs, is called luminescence. This process is the basis of the
operation of light emitting diodes and semiconductor lasers. Table 8.1 shows the
energy gaps and the corresponding wavelengths for several important
semiconductors, also indicating the nature of the gap, direct (d) or indirect (i). It
can be seen in the table that some direct gap semiconductors are suitable to
manufacture light emitting diodes operating at various wavelengths. Also, by
combining various compounds in the form of alloys, such as GaxAl1−xAs, it is
possible to obtain materials with gaps varying continuously in extensive ranges of
the visible and infrared regions.

The processes of interband light absorption and emission in insulators are the
same as in semiconductors. However, since the energy gap in insulators is of the
order of 10 eV, photons in the visible region do not have enough energy to produce
interband transitions. This is the reason why insulating crystals, such as diamond,
sapphire, and sodium chloride, for example, are almost entirely transparent to visible
light.

To illustrate the most important optical properties of insulators, we show in
Fig. 8.12 the transmission spectra of sapphire, which is the crystalline form of
Al2O3. Figure 8.12a shows the transmission as a function of wavelength,
represented on a logarithmic scale to highlight the entire range of transparency. It
shows a transmission above 80% in the wavelength between 200 nm (energy of
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Table 8.1 Gap energies and corresponding wavelengths at room temperature in important
semiconductors

Semiconductor Gap Eg(eV) λg (μm)

Si I 1.12 1.11

Ge I 0.67 1.88

AlN I 5.90 0.21

AlAs I 2.16 0.57

GaN d 3.40 0.36

GaP i 2.26 0.55

GaAs d 1.43 0.86

InP d 1.35 0.92

InAs d 0.35 3.54

InSb d 0.18 6.87

CDS d 2.53 0.49

CdTe d 1.50 0.83

6.2 eV) and 2500 nm (0.5 eV), extending from the infrared to the near ultraviolet
and covering the entire visible region (400–700 nm). The depression in the
transmission in the form of a dip around λ = 3000 nm and the strong decrease at λ

> 6000 nm, result from the absorption of infrared radiation by optical phonons in
sapphire. On the other hand, the drop in transmission in the ultraviolet region, at λ

< 200 nm, is due to the absorption by interband transitions produced by photons
with energy above 6 eV.

In the transparency range, there are no electronic transitions to absorb the photons
and, therefore, the absorption coefficient is negligible. In this situation the imaginary
component of the refractive index is negligible and the real component is n = (εr)1/2.

Fig. 8.12 Transmission spectra measured in samples of Al2O3. a Pure crystal, called sapphire,
on a logarithmic wavelength scale, to show the entire range of transparency. b Comparison of the
spectra of sapphire (pure Al2O3) and ruby (Al2O3 with 0.05% Cr3+)
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This is the case of sapphire, that has n = 1.77. With this value of n, the reflectivity,
given by Eq. (8.21), isR = 0.077, while the transmission of one surface is T = (1− R)
= 0.923. It turns out that the spectrum shown in Fig. 8.12a was measured in a sample
in the form of a thin plate, which reflects the light wave at the two surfaces. For this
reason, the transmission is given by (1 − R)2 = 0.85, which is the value observed in
Fig. 8.12a. The presence of a small amount of Cr3+ impurities in sapphire produces
two bands of strong absorption, shown in Fig. 8.12b. The band at higher energy is
in the blue region, centered on λ = 400 nm (3.1 eV), and the one at lower energy
is in the green-yellow region, centered on λ = 550 nm (2.25 eV). The presence of
these bands gives the crystal of Cr3:Al2O3 a red color, as will be explained in the
next section. This crystal is ruby, found in nature as a precious stone. Ruby crystals
can also be grown synthetically through the techniques presented in Chap. 1.

Example 8.4 A sample of CdTe in the form of a plate with parallel faces,
with thickness 0.3 μm, has anti-reflective layers for visible light on both sides.
Calculate the transmission of a light beam from aHe–Ne laser, withwavelength
632.8 nm, incident perpendicularly to the plate.

In Example 8.1 we calculated the absorption coefficient of CdTe at the
wavelength λ1 = 500 nm, and obtained α (ω1) = 9.55 × 106 m−1. Since
CdTe is a direct gap semiconductor, the variation of the absorption coefficient
with energy in the vicinity of the band gap is given by Eq. (8.60). Then, the
absorption coefficient at the wavelength λ2 = 632.8 nm, can be calculated with

α(ω2)

α(ω1)
= (�ω2 − Eg)

1/2ω1

(�ω1 − Eg)1/2ω2
= (�ω2 − Eg)

1/2λ2

(�ω1 − Eg)1/2λ1
.

The energy gap of CdTe, given in Table 8.1, is Eg = 1.5 eV. The photon
energy at the wavelength λ2 is

�ω2 = hc

λ2
= 6.63 × 10−34 × 3 × 108

632.8 × 10−9
= 3.14 × 10−19 J,

that gives in eV

�ω2 = 3.14 × 10−19

1.6 × 10−19
= 1.96 eV.

Similarly,

�ω1 = hc

λ1
= 1.96 × 632.8

500
= 2.48 eV.

Thus,
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α(ω2) = 9.55 × 106 × (1.96 − 1.5)1/2 × 632.8

(2.48 − 1.5)1/2 × 500
= 8.28 × 106 m−1.

Since there are no reflections at the surfaces, the transmission is given by

T = e−αd = e−8.28×0.3 = 0.084

Therefore, the transmission is 8.4%.

8.3.4 Absorption and Emission of Light in Crystals
with Impurities

In semiconductor or insulator crystals containing impurities, the presence of discrete
energy levels between the valence and conduction bands creates additional sources of
photon absorption and emission processes. Figure 8.13 illustrates impurity emission
processes in n-type and p-type semiconductors. In (a) an electron goes from the
conduction band to an empty level of an acceptor impurity emitting a photon with
energy Ec − Ea. In (b) an electron at the donor impurity level recombines with
a hole in the valence band emitting a photon of energy Ed − Ev. Although the
number of impurities in a solid is very small compared to the number of crystal
ions, the processes of photon emission and absorption involving impurity levels are
very important, especially in indirect gap semiconductors. This is due to the fact that
the wave function of an electron bound to an impurity has a spatial location with
uncertainty �x of the order of the interatomic distance a. This uncertainty in the
electron position results in an uncertainty in its momentum �p, given by Eq. (2.46),
�x�p ≥ �/2. For�x ∼ a, the uncertainty in the electronwave vector is�k ∼ (2a)−1,

Fig. 8.13 Illustration of two types of electron–hole recombination involving impurity levels with
emission of photons. a Acceptor impurity in p-type semiconductor. b Donor impurity in n-type
semiconductor
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which covers a wide range of the Brillouin zone. As a result, transitions involving
impurities can occur by emission or absorption of photons, without the participation
of phonons to conservemomentum. Thismakes these transitionsmuchmore efficient
than interband transitions in indirect gap semiconductors. Due to the ease of electrons
and holes to recombine through this photon emission process, impurities are called
recombination centers.

Transitions between discrete levels are also very important in insulators containing
impurities of certain elements, especially those of the 3d transition group and rare
earths. As we will see in the next chapter, in these elements the formation of impurity
ions leaves unfilled inner electronic shells, which often have energy levels within the
insulator or semiconductor energy gap. This is the origin of the absorption bands that
appear in Al2O3 crystals (sapphire) with Cr3+ impurities, shown in Fig. 8.12b. The
presence of impurities introduces in the gap two sets of levels that form the bands
4F1 and 4F2, in addition to the discrete levels 2E and 2F2, shown in Fig. 8.14. When
the crystal is illuminated with white light, there are transitions from the ground state
4A2 to the bands 4F1 and 4F2 by photon absorption. These transitions are responsible
for the absorption bands shown in Fig. 8.12b. Subsequently, electrons in the 4F2
band decay quickly to the 2E level, by non-radiative transitions, and then return
to the ground state 4A2 by radiative transitions with the emission of photons with
wavelength 694.3 nm. In this way, the crystal absorbs white light and emits red light,
giving ruby its bright red color. This is the photoluminescence process that is the
basis of operation of the ruby laser, the first laser ever built. The invention of the
ruby laser by Theodore Maiman in 1960 revolutionized the field of optics in science,
and set the stage for the development of optoelectronic and photonic technologies,
that together with electronics and computer science, revolutionized the costumes of
mankind.

Fig. 8.14 Energy levels and
important transitions in
Cr3+:Al2O3, the ruby crystal
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8.4 Photodetectors

Photodetectors are devices that convert light into an electric signal by means of
various phenomena. The first technologically important phenomenon was the
photoelectric effect, discovered at the end of the nineteenth century, and studied in
Chap. 2. It is the basis for the operation of traditional photoelectric cells, made of a
vacuum bulb containing a photocathode and an anode, to which an external voltage
is applied (positive at the anode). When photons are incident on the photocathode,
electrons emitted by means of the photoelectric effect are accelerated to the anode
producing an electric current. This constitutes a simple photoelectric cell. With the
introduction of electrodes between the photocathode and the anode it is possible to
multiply the number of electrons and amplify the current. This is the principle of
operation of photomultiplier tubes, which are extremely sensitive devices.
Currently there are photomultiplier tubes for scientific applications that detect
radiation by counting photons individually, at levels of few counts per second.

Like in electronics, the development of photodetectors and photoemitters
manufactured with semiconductors made possible to replace the photo tubes and
vacuum light bulbs, providing a huge boost to optoelectronics. The photodetectors
most used today in the visible and near infrared regions are semiconductor
photodiodes and photoresistors. These devices do not operate in the middle or far
infrared regions, since the photons do not have enough energy to produce
electron-hole pairs. In these regions, one uses thermal photodetectors, in which the
absorption of light produces heating in the sensor element and varies its electrical
resistance. In this section we shall study only photoresistors, photodiodes, and CCD
image sensors, which are the most important photodetectors for optoelectronics. In
these devices, the basic mechanism for converting light into an electric current is
the generation of electron-hole pairs by absorption of photons. This process causes
a decrease in the intensity of the light as it penetrates into the material, determined
by the absorption coefficient α of the material at the light frequency. The variation
the light intensity along the propagation direction x is given by Eq. (8.13)

I (x) = I0 e−α x ,

where I0 is the intensity of radiation at x = 0. Since the intensity decays exponentially
with distance, to ensure that almost all incident photons are absorbed, the thickness
of the material should be much larger than α−1. Figure 8.15 shows the variation of
the absorption coefficient with wavelength for several important semiconductors. In
a photodetector, generally the aim is to work with materials with α ∼ 106 m−1 in the
operation range of the device. This ensures that almost all photons are absorbed in
a distance from the surface of just a few μm. With this condition it is seen that the
best materials for photodetection in the visible region are Si and GaAs. Detectors for
the wavelengths used in optical communications, λ = 1.3 μm and 1.5 μm, are made
with Ga0.3In0.7As0.6P0.4 and Ga0.5In0.5As, respectively.
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Fig. 8.15 Variation of the
absorption coefficient α with
the wavelength for several
semiconductors [Wilson and
Hawkes]

107

106

105

104

10 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
3

Considering that the semiconductor has a thickness such that all radiation is
absorbed, the rate of creation of electron-hole pairs is determined by the initial light
intensity I0. Therefore, the number of photons absorbed per unit time and per unit
area is given by Eq. (8.12), 	 = I0 /�ω. Actually, there is always some absorption
process that does not result in the creation of electron-hole pairs. The quantum
conversion efficiency η is defined as the ratio between the number of pairs
produced and the number of photons absorbed. Thus, the number of pairs created
per unit time and area is ηI0 /�ω. Therefore, the rate of generation of carriers,
defined as the number of pairs created per unit volume and per unit time is

g = ηI0
�ω d

, (8.63)

where d is the thickness of the semiconductor. Since electrons and holes are created
in pairs, the variation δn in the concentration of electrons due to the radiation is equal
to variation in the concentration of holes, δp = δn. The time rates of changes in the
carrier concentrations are then

∂δp

∂t
= ∂δn

∂t
= g. (8.64)

This equation shows that if the light intensity incident on the semiconductor is
constant and if there are no other mechanisms besides the generation of electron-hole
pairs, the number of carriers grows linearly in time, indefinitely. Actually, whenever
the concentrations grow above equilibrium, recombination processes tend to restore
the equilibrium. The rate at which the pairs are destroyed is determined by the
recombination timeof theminority carriers, τ p or τ n, dependingon the semiconductor
type. Using τ r to represent this time, the rate of recombination is given by the ratio
between the excess of minority carriers, δp or δn, and the time τ r . Since δp = δn, the
recombination rate is
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r = δp

τr
= δn

τr
. (8.65)

In steady state r = g, so that the concentrations of electrons and holes generated
by light, per unit time, are given by

δn = δp = gτr = ηI0τr

�ω d
, (8.66)

This expression determines the number of carriers created in semiconductor
photodetectors, which will be presented in the following sections.

8.4.1 Photoresistors

Photoconductivity is the phenomenon by which the conductivity of a material
changes with the incident light intensity. Photoconductivity is at the root of
operation of the simplest photodetector, the photoresistor, that is also called light
dependent resistor, or LDR. The simplest structure of a LDR is made of a small
slab of an intrinsic semiconductor, or with a very small doping, having at the ends
two metallic electrodes for the application of an external voltage, as shown in
Fig. 8.16. In the absence of light, the resistance of the LDR is large because the
number of carriers is small. When it absorbs light, the number of carriers increases
because of the creation of electron-hole pairs. This can produce a sizeable decrease
in the resistance relative to its initial value, resulting in an increase in the current
between the electrodes. To calculate the effect of light on the current we use
Eq. (5.52) for the conductivity,

σ = n e μn + p e μp

The absorbed radiation produces a variation in the concentrations of the carriers,
given by Eq. (8.66), resulting in an increase in conductivity given by

Fig. 8.16 Simple structure
of a photoresistor, or LDR
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�σ = g τr e (μn + μp). (8.67)

If the voltage applied to the electrodes is V, the variation in the current density is
�J = �σ V /l. Therefore, the variation in the current intensity is

�I = b d

l
g τr e (μn + μp) V . (8.68)

It is common to define the photoconductivity gain as the ratio between the current
variation due to the change in conductivity produced by the external voltage, given
by Eq. (8.68), and the current due to the electron-hole pairs generated by light. Since
this is the total charge of the electrons generated by the radiation per unit time, the
gain is

G = �I

e g b d l
.

Using Eq. (8.68) in this expression, we obtain for the photoconductivity gain

G = τr (μn + μp) V

l2
. (8.69)

This result shows that the gain increases with the value of the applied voltage and
with the decrease in the distance between the electrodes. Evidently, the values of μn,
μp, and τ r depend on the material used.

Figure 8.17 shows the top view of the photoconductive element used in
commercial photoresistors, and the view of a typical encapsulated device. The
photoconductive element is formed by an insulating substrate with the shape of a
disk with diameter ranging from a few mm to several cm. A photosensitive
semiconductor, such as CdS, CdSe, PbS, InSb, HgxCd1−xTe, is deposited over the

Fig. 8.17 a Top view of the photoconductive element with the metal electrode. b View of a typical
commercial photoresistor
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substrate, and on top a metallic film (Al, Ag, or Au) to form the electrodes. The
metallic film is evaporated through a mask that leaves the exposed area of the
photoconductive material in the form of a zigzag. This results in a large area for
illumination of the semiconductor, combined with a small value of the distance
between the electrodes, in order to produce a high gain.

The most used materials to manufacture photoresistors to operate in the visible
region areCdSandCdSe. In the near infrared, PbS is used, and in themedium infrared,
the most common are InSb and HgxCd1-xTe. These materials have high values for
the absorption coefficient in the spectrum range of their operation, and also relatively
high mobilities μn and μp and recombination time τ r . In addition, these materials
are favorable for the formation of traps caused by defects in the crystal lattice or
impurities. These traps have the role of temporarily trapping electric charge carriers
with a certain sign. For example, Mn2+ impurities behave as electron traps. Thus,
while carriers with a certain charge are trapped, carriers with the opposite charge
can move from one electrode to another with less probability of recombination. This
results in an effective increase in τ r , and consequently higher device gain.

An important consideration in any photodetector device regards the noise
generated in the absence of radiation. The noise amplitude determines the
minimum level of radiation that can be detected. In the case of photoresistors and
photodiodes, the main source of noise is thermal generation of electron-hole pairs.
Since the probability of thermal generation is proportional to exp (−Eg/2kBT )
[Eq. (5.25)], the noise depends on the material used and the operating temperature.
For this reason, since the materials used in infrared photodetectors have energy gap
Eg smaller than those used in the visible region, they have higher noise. To reduce
the noise in photodetectors, it is common to cool the photoconductive element. This
can be done electrically using compact thermoelectric devices, which easily
produce temperatures of the order of −30 °C (∼240 K). Although this temperature
represents a reduction relative to room temperature of only 20%, the effect on the
noise is sizeable due to its exponential variation with T−1.

In general, photoresistors are slow devices because they are made with
semiconductors that have very long recombination times. For this reason, their use
is restricted to applications that need high gain values (103–104) and that do not
require a fast response. For example, photoresistors made with CdS and CdSe, that
have response time of the order of 50 ms, are used in light intensity meters of
cameras.

To conclude this section, we present in Fig. 8.18 a simple circuit for polarization
of a photoresistor. The photoresistor, or LDR, represented in the circuit through
its most common symbol, is placed in series with the load resistor RL. When the
incident light intensity varies, the current in the circuit follows the variation of the
light. This produces a voltage across RL, whose variation provides a measure of the
light intensity. When only the AC component of the voltage is of interest, a capacitor
is used at the output to block the DC part. The value used for RL depends on the value
of the resistance RD of the LDR, and also on its relative variation with the maximum
light intensity.

In case the relative variation of RD is small (up to 10%), the largest variation in VL

is obtained with RL = RD. On the other hand, when the variation of RD is very large,
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Fig. 8.18 a Circuit symbol of a photoresistor, or LDR. b Simple circuit used to polarize an LDR

the linearity between the variations of the light intensity andVL occurs approximately
with RD >> RL. For this reason, if the output voltage is high, photoresistors must be
manufactured with the highest possible value of RD. This is another reason why the
geometry of the photoresistor is made in the form of a long zigzag ribbon, as shown
in Fig. 8.17a.

8.4.2 Photodiodes

Photodiodes are light detectors in which the electric signal is produced by the
generation of electron–hole pairs caused by absorption of photons in the immediate
vicinity of the depletion region of a p-n junction. Electrons and holes created in
pairs by the electromagnetic radiation are accelerated in opposite directions by the
electric field of the junction. Since the field has direction from side n to side p,
holes are accelerated in the n → p direction, while electrons move in the p → n
direction, as illustrated in Fig. 8.19. This produces a current generated by the

Fig. 8.19 Illustration of the
electron-hole pair generation
by absorption of photons in
the depletion region of a p-n
junction in a photodiode,
followed by the acceleration
of charges in opposite
directions
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radiation in the direction n → p, which is the direction of the reverse current at the
junction. A major advantage of photodiodes relative to photoresistors is that they
do not need an external voltage to produce a photocurrent.

The detection of radiation in photodiodes can be done in two different modes of
operation: in the photovoltaic mode the photodiode operates with open circuit, with
no applied voltage. In this case, when the junction is illuminated, a voltage appears
between the p and n sides that can be measured externally. In the photoconductive
mode the device is short-circuited, or operates under an external voltage in the
reverse bias direction. In this situation, a current flows in the reverse direction when
the junction is illuminated. The choice of the photodiode operation mode depends on
its application. Any one of the modes can be used to detect light. The photovoltaic
mode is used to convert light energy into electric energy, as in the case of solar cells.

In any mode of operation, the photodiode under radiation behaves as a p-n
junction whose current has two components: the first is the one that exists without
pair generation by the absorbed photons. It is called dark current and is given by
Eq. (6.29)

Id = Is(e
eV/kB T − 1), (8.70)

where Is is the reverse saturation current, given by Eq. (6.30), and V is the voltage
at the junction. The other component is the current produced by the electron-hole
pairs generated by the photons absorbed in the vicinity of the junction. If I0 is the
intensity of the absorbed radiation and η is the quantum efficiency of the conversion,
the number of pairs created per unit volume and per unit time is given by Eq. (8.63),
g = ηI0/�ω d . To calculate the total number of pairs created one must consider
that minority carriers generated outside the depletion region (thickness l), but within
a distance of the order of the diffusion length (Ln and Lp), are able to diffuse to
the depletion region and then are accelerated by the field across to the other side
of the junction. Since, in general, Ln, Lp >> l, the contribution of these pairs to
the current is important, making the effective volume for generation of pairs to be
dA ≈ (l + Ln + Lp) A, where A is the area of illumination of the junction. The current
at the junction produced by the light is then

IL = e g d A = η e I0 A

�ω
.

As PL = I0A is the light power incident on the effective area of the junction, using
the relation �ω = h c/λ, we can write this contribution in the form

IL = η e PLλ

h c
. (8.71)

The quantum conversion efficiency depends on the material used and also on the
wavelength λ of the radiation. Since this current has the direction of the reverse
polarization, the total current in the photodiode is given by
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I = Is(e
eV/kB T − 1) − IL . (8.72)

Figure 8.20 shows the I-V characteristics of a photodiode in the dark regime
(PL = 0) and under illumination, for two values of light power PL. The effect of the
radiation contributes a negative portion to the current, regardless of V, which
increases proportionally to the light intensity. Equation (8.72) and its graphical
representations are used to analyze the two modes of operation of the photodiode.

In the photoconductive mode the photodiode operates in short circuit. In this
case, V = 0 and Isc = − IL. The corresponding operating point is shown in the I-V
curve of Fig. 8.20 corresponding to the light power P2. In the photovoltaic mode
the photodiode operates with open circuit, so I = 0. In this case the absorption of
light gives rise to a voltage at the diode terminals, whose value is obtained directly
from Eq. (8.72),

Voc = kB T

e
ln

(
IL

Is
+ 1

)
. (8.73)

The operating point I = 0, V = Voc, is the intersection of the voltage axis with the
I-V curve, shown in Fig. 8.20. Actually, in all applications the photodiodes do note
operate strictly in one of the modes above. As we shall see in the next section, solar
cells operate close to the photovoltaic mode, while photodetectors operate near the
photoconductive mode.

To make a photodiode act as a photodetector, an external voltage is applied so
that the junction operates in the third quadrant of the I-V characteristics, such that
I ≈ Is – IL. If the thermal pair generation is much less than the absorption of photons,
the reverse saturation current can be neglected in comparison to IL. In this case, the
current in the photodiode will be proportional to the radiation power incident at

Fig. 8.20 I-V characteristic
of a p–n junction with no
illumination (PL = 0) and
under illumination with two
values of light power,
P2 > P1
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Fig. 8.21 a Circuit symbol of a photodiode. b Simple circuit for using the photodiode as a radiation
detector

the junction. Besides the linear response, the photodiode has other advantages over
the photoresistor as a radiation detector. The most important ones are the speed of
response, better stability, and larger dynamic range of operation. In applications that
do not require a very fast response, it still has the advantage of being able to be used
in a very simple circuit, formed only by a small load resistance (of a microameter,
or connected to an electronic voltmeter), illustrated in Fig. 8.21.

For small light intensities the photocurrent is small, so that if RL is small, V = RLI
<< Voc. In this case, the operating point is close to Isc, V = 0, so that the current is
proportional to the incident power. The advantages of using an additional battery to
reverse bias the diode, are the increase in the response speed and also in the dynamic
range of operation.

The most used material to manufacture photodiodes for the visible region is
silicon. Figure 8.22 shows the responsivity of a commercial Si photodiode as a
function of wavelength. This quantity, which is often used to characterize the
response of photodetectors, is the ratio between the photocurrent and the incident
light power, IL/PL. The dashed line shown in the figure is the responsivity of an

Fig. 8.22 Responsivity of a
Si photodiode (solid line).
The dashed line indicates the
response of an ideal
photodetector, obtained with
Eq. (8.71) with η = 1
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Fig. 8.23 Structure of the p+-n-n+ junction of a photodiode

ideal photodetector, calculated with Eq. (8.71) using η = 1 for any wavelength
(Problem 8.11). We see in the figure that the responsivity of silicon approaches that
of an ideal photodetector in most of the visible region. Figure 8.23 shows the
typical structure of a Si photodiode. It is formed by p+ and n+ regions at the ends to
facilitate the ohmic contact with the metal films. The main difference for the
common diode structure, as the one shown in Fig. 6.1, is the opening in the metal
contact for the light entrance. It is also common to deposit on the entrance surface
an anti-reflective dielectric layer to increase the conversion efficiency. Since the
electron-hole pairs are created in the depletion region or in its vicinity, the
thickness of the p+ side should be as small as possible so that the light is not
absorbed before reaching the junction. According to Eq. (6.9), thickness of the
depletion region in a p+-n junction on the n-side is much larger than on the p+-side.
Therefore, the thickness of the region n should be sufficiently large to ensure that
all radiation incident on the photodiode is absorbed.

Another structure commonly used in photodiodes is that of the PINdiode, inwhich
an intrinsic semiconductor layer is interposed between the p+ and the n+ regions of
the p-n junction, as illustrated in Fig. 8.24. The acronym PIN indicates the intrinsic

Fig. 8.24 a Model of the
PIN photodiode structure.
b Variation of the electric
field along the photodiode
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semiconductor between the p and n sides. Actually, the layer is not really intrinsic,
but it has a very small concentration of donor impurities (Nd < 1013 cm−3), so that it
has high resistivity. This results in a depletion region that extends over to the n+ side,
so that the useful thickness of the photodiode is much larger than in the simple p-n
structure. This improves the response in the long wavelength region, as it ensures
that all radiation is absorbed in this region with the lowest absorption coefficient.

Other widely used photodetectors are the avalanche photodiode and the
phototransistor. The avalanche photodiode operates under a reverse voltage large
enough to produce avalanche multiplication, which results in current gain. This
allows the device to act with a small load resistance, thus increasing its response
speed. On the other hand, the high gain enables the generation of an appreciable
voltage in the resistance. The phototransistor is a device in which the emitter-base
junction can be illuminated in a manner to generate electron-hole pairs. This results
in an emitter current that varies with the light intensity, allowing the detection of
light with current gain.

8.4.3 Solar Cells

The solar cell is a photodiode with a large area of exposure to radiation, whose
operation aims to supply energy to an external load. For this to occur, it is necessary
that the photodiode operates in the fourth quadrant of the I-V characteristics, in such
a way that the power absorbed by the device, given by the product V I, is negative. In
this situation, the photodiode converts light energy into electric energy. The circuit
used for the operation of a solar cell is the same as the one in Fig. 8.21, except that
the value of RL, instead of being small, must be chosen to maximize the delivered
power. The operating point of the circuit is determined by the intersection of the load
line of the resistor RL with the I-V curve of the solar cell, as shown in Fig. 8.25. Note
that the area of the gray rectangle, shown in the figure, represents the electric power
Pd = V I delivered to the load. Thus, the best value of RL is the one for which Pd is
maximum. The values Vm and Im of the voltage and the current for operation in the
condition of maximum Pd , determined by dPd /dV = 0, are given by (Problem 8.14)

Vm = kB T

e
ln

[
1 + (IL/Is)

1 + (eVm/kB T )

]
≈ Voc − kB T

e
ln

(
1 + eVm

kB T

)
, (8.74)

Im = Is
eVm

kB T
eeVm/kB T ≈ IL

(
1 − kB T

eVm

)
. (8.75)

Since Eq. (8.74) is a transcendental equation, it is not possible to obtain an
analytical expression for Vm, from which the expression for the optimal value of RL

would be obtained. However, using the value of Voc given by the I-V curve,
Eq. (8.74) can be solved numerically, leading to the value of Vm. With this value
one can obtain the value for Im with Eq. (8.75) and therefore the resistance
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Fig. 8.25 Graphical
determination of the
operating point of a circuit
with a solar cell in series
with a resistor RL

RL = V m/Im. The conversion efficiency of the solar cell is the ratio between the
maximum electric power and the incident light power PL. One can see that this
efficiency increases with the increase in Voc and in the ratio IL/PL.

Currently, the best commercial solar cells are made with crystalline Si, with the
structure shown in Fig. 8.26. The junction is formed by a thin n-type layer produced
by strong doping (Nd ∼ 1018 cm−3), in a p-type substrate (Na ∼ 1015 cm−3 – 1017

cm−3). The thickness of the n-region is made small so that most of the incident
light goes through with little absorption over a wide frequency range. To increase
the exposure area and at the same time keep the contact resistance small, the upper
electrode is made in the form of a comb, with fine teeth, as illustrated in the figure.
Crystalline Si solar cells in general have circular shape, with diameters of the order
of 10 cm or larger, since this is the shape obtained by cutting the Si ingots. Cells
made from amorphous or polycrystalline Si have rectangular or square shapes, that
have the advantage of occupying the area of a panel when placed next to each other.

Fig. 8.26 Structure of a
rectangular Si solar cell.
a Cross section. b View from
above
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Today good Si solar cells have conversion efficiencies in the range of 15–20%. The
solar radiation in themiddle of a clear day, at sea level, has intensity in the range 70–80
mW/cm2. This produces in a cell with area 40 cm2, an open circuit voltageVoc ~ 0.7V
and a short-circuit current Isc ~ 1 A. Since the operating values are a little lower than
these, it is clear that solar cells must be combined in series and in parallel to produce
voltages and currents suitable for different types of loads. In general, the cells are
placed on large panels, interconnected, in order to collect solar energy in large areas
to produce sufficient electric power for various applications. Until about two decades
ago, solar energy was used for specific applications, such as the supply of electricity
in remote households. However, the sharp decrease in the manufacturing costs of
Si solar cells, combined with the development of power electronics for conversion
from DC to AC, have made photovoltaic energy generation competitive with other
forms of electric power generation. Today, the energy generated by solar panels on
top of house roofs, or in large “solar farms”, fed into the electricity distribution grids
constitutes a sizeable percentage of the energy generation in some countries. Also,
there is intense research activity to produce more efficient solar cells, made with
different semiconductor materials with various crystals and physical structures, at
costs competitive with Si cells.

8.4.4 CCD Image Sensor

A black and white image in two dimensions, static as in a photograph, is formed
by a large number of small area elements, called pixels, each with a tone ranging
from white to black, passing through all gradations of gray. Larger number of pixels
result in better image resolution. A moving image, as in video, cinema, or television,
is formed by a sequence of static images, each one with little difference from the
previous. They are shown one after the other, with a small time interval, in such a
way that the human perception system has the sensation of a continuous motion. The
image on standard television is formed by frames with 525 horizontal lines, with
a 60 Hz frame display rate. An image sensor is a device that produces an electric
signal corresponding to an optical image. It is used in photo or video cameras. The
electric signal from the sensor can be stored in analog or digital form, or transmitted
through cables or electromagnetic waves. One of the most used image sensors is of
the type known as charge-coupled device, or CCD.

The CCD is part of a class of charge-transfer device structures, developed at the
Bell Laboratories in 1969. They are dynamic devices, that move a packet of charge
from one unit to another neighboring unit, along a chain, in a sequence determined
by the pulses of the system clock. These devices have a variety of applications in
electronics, such as in memories, in various logic functions, signal processing, and
image sensors. The CCD image sensor is made up of a set of metal-insulating-
semiconductor (MIS) capacitors, fabricated in the same semiconductor wafer as in
an integrated circuit, forming a network in two dimensions. The semiconductor most
used for visible light sensors is Si, while for the infrared the most used ones are InSb
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Fig. 8.27 Basic structure of a Si CCD image sensor

and HgCdTe. In the case of silicon, the insulator is SiO2, and the capacitors are of
the MOS type, studied in Sect. 7.6. Figure 8.27 illustrates the basic structure of the
CCD image sensor, also called MIS- or MOS-photodetector. The metal electrodes
of the capacitor gates are thin films, with thickness of the order of 100–300 nm,
that let the incident light pass through. Each capacitor has a size of the order of
10 × 10 μm2 and corresponds to one pixel of the image. The set has a lateral
dimensions that can vary from a few mm to several cm. Currently, CCD image
sensors havemore sophisticated structures,with a polycrystalline silicon gate, instead
of metal, and with buried electrodes.

The image is formed in the area of the device by means of the optical system of
the camera, causing a certain flow of photons to focus on each pixel. The photons
with energy larger than the energy gap create in the region near the semiconductor
surface electron-hole pairs, with a rate proportional to the intensity of light in each
pixel. A voltage applied between the gate and the electrode on the other side of the
wafer (or on the buried electrode, as studied in Sect. 7.8), attracts electrons to the
surface and removes the holes, which diffuse into the substrate and are captured in the
external circuit, as illustrated in Fig. 8.27. During a time interval characteristic of the
device operation (ranges from 100 μs to 100 ms), electron packets form under each
capacitor gate, each with total charge proportional to the light intensity integrated
in the interval. After this exposure interval, the information stored in each line of
capacitors in the form of charge packets, is displaced quickly (in a much shorter time
than the exposure interval) to the edge of the line, producing an electric current signal
corresponding to the image on the line. The time-varying signal corresponding to a
line is followed by the signal of the next line, and so on, in a vertical scan process,
from top to bottom. The signal corresponding to the set of lines forms a frame. A
static image is formed by only one frame, while an image in motion is formed by a
sequence of frames, typically at a rate of 60 Hz.

The transfer of the charge packets from each capacitor to the end of the line is
made by the action of a sequence of voltage pulses, applied to the capacitor gates,
in a process characteristic of transfer devices, or charge-coupled devices. This is the
reason for the name CCD of this type of image sensor. Among the different types
of CCD structures, the most used ones are those of two phases and three phases.
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Figure 8.28 illustrates the charge transfer in a three-phase structure. Figure 8.28a
shows a few capacitors along a line, the external connection scheme for application
of voltage pulse sequences, and a packet of charges in capacitor 1, at a certain time
t1. Figure 8.28b illustrates the variation the electric potential and the charge along the
capacitor chain, at four time instants. Figure 8.28c shows the variation in time of the
electric potential in the three phase lines, φ1, φ2, and φ3. They are periodic functions
with two values, one high and one low, with period determined by the system clock.
They all have the same shape. However, the phase at φ2 lags the one at φ1 by a time
interval corresponding to one-third of the period, while the phase at φ3 lags φ2 also
by one-third of the period. Figure 8.28c shows that at time t1, the potential φ1 is high,

Fig. 8.28 Illustration of the charge transfer process in a CCD device. aMOS capacitor connections.
b Variation in the electric potential of the charge distribution. c Variation in time of the potentials
of the three lines
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while φ2 and φ3 are low. Since the electron charge is negative, the potential energy is
in the form of a well in the region of capacitor 1, which maintains the charge packet
in that region, as illustrated in the diagram of Fig. 8.28b. At time t2 the potential φ2 is
high, while φ1 remains high, so that the energy well extends to capacitor 2, making
the original charge split between capacitors 1 and 2. At the instant t3 the potential φ1

is smaller than φ2, which remains high, so that most of the charge moves to capacitor
2, a process that is completed when the potential φ1 reaches a low value while φ2

remains high (time t4). Thus, in each cycle of the potential, the charge moves from
a capacitor to the neighboring one until it reaches the end of the line, giving rise to
the current signal corresponding to the original pixel of the image at the position of
capacitor 1.

8.5 Light Emitting Diodes (LED)

The conversion of an electric signal into a light signal is a very important
phenomenon in electronics and other fields of technology. One of its most
elementary application is in indicators and light displays used in electric and
electronic equipment, appliances, sound and video equipment, scientific and
industrial equipment, watches, etc. Another important application is in the
generation of images from an electronic signal, as in displays of mobile phones,
tablets, computers, television sets, and several other equipment. Starting in the
1980s, this function became more important with the dissemination optical
communications, in which an electric signal containing information to be
transmitted is encoded into a light signal generated by a light emitting diode or a
semiconductor laser. This light signal propagates through an optical fiber to the
receiver, where it is decoded and converted again into an electric signal in a
photodetector, reproducing the original information.

The simplest and most traditional way of generating light with an electric current
is through heating. When an electric current flows through a metallic wire, the atoms
of the metal vibrate due to the collisions of electrons in the current. This results in
heatingof thewire and also in electromagnetic radiationproducedbyvibrating atomic
charges. This radiation occurs in a wide range of the electromagnetic spectrum,
which can extend from the infrared to the visible regions, with a peak at an energy
that increases with the material temperature. For a wire to be sufficiently heated and
emit radiation in the visible region, it must be made of a material with high melting
point and placed in vacuum or in an inert atmosphere, to avoid combustion. The
incandescent lamps are made with tungsten threads, heated to temperatures of about
6200 °C. At this temperature the peak of the radiation spectrum occurs in the visible
region. However, most of the energy in the electric current is converted into heat or
infrared radiation, making the efficiency of conversion into visible light very low.
In typical incandescent lamps, only 13% of the electric energy are converted into
light energy. Besides the inefficiency, these lamps generate a lot of heat and have an
extremely slow response. For a long time they were used in indicators and device
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displays in electronic devices, but since the 1970s they have been replaced by light
emitting diodes and other solid-state devices, such as liquid crystals displays.

The emission of light in an incandescent lamp occurs due to heating, a classical
physical mechanism. The operation of modern optoelectronic devices is based on
quantum processes of radiation emission, by means of luminescence processes.

The operation of a light emitting diode, or LED, is based on a special form of
electroluminescence, produced by injection of charge carriers in a p-n junction. As
we saw inSect. 6.2,when a p-n junction is biased in the forward direction, holes on the
p-side and electrons on the n-side move in opposite directions towards the depletion
region. Holes injected into the n-side recombine with electrons that are arriving in
the depletion region, while electrons injected into the p-side recombine with holes.
In this way, all electrons and holes that participate in the current recombine in the
vicinity of the depletion region, in a layer of thickness Lp on the p-side and Ln on
the n-side. If the semiconductor of the junction has an indirect gap, such as Si or
Ge, the recombination produces phonons, in addition to photons and, therefore heat.
This makes light emission very inefficient in p-n junctions made with indirect gap
semiconductors. However, if the semiconductor has a direct gap, the recombination
of each electron-hole pair results in the emission of one photon. Figure 8.29 illustrates
the process ofminority carrier injectiononboth sides of ap–n junction, producingpair
recombination and emission of photons by inter-band transitions. In diodesmadewith
direct gap semiconductors this process is extremely efficient in converting electric
energy into light. If the electrons in the conduction band haveminimumenergyEc, the
photons emitted in the interband transition have energy equal to the semiconductor
gap, Eg. In general, due to the thermal excitation energy, the average energy of the
electrons is about Ec + kBT /2. This causes the energy of the photons emitted in the
transition region to be a little higher that Eg. In addition to the interband transition,
shown in Fig. 8.29, it is possible to have at the p-n junction transitions involving
impurity levels, as illustrated in Fig. 8.13.

Most materials used in LEDs are ternary alloys, such as GaxAl1−xAs and
GaAs1−xPx. GaAs is a direct gap semiconductor with small resistivity, which can
be easily doped with n- or p-type impurities, for making p-n junctions with high
luminescence efficiency in interband transitions, with wavelength of about
0.87 μm. This value corresponds to the radiation in the near infrared. Since GaP

Fig. 8.29 Recombination of
electron–hole pairs with
emission of photons in
interband transitions, due to
the injection of minority
carriers in a forward biased
p-n junction
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has a larger energy gap, the alloys formed by GaAs and GaP have interband
transitions with wavelengths shorter than in GaAs. It is interesting to note that
unlike GaAs, GaP has an indirect gap. With this, the gap in the GaAs1–xPx alloy is
direct for x < 0.45, as GaAs, but it becomes indirect for x > 0.45. The alloy
composition GaAs0.6P0.4, with direct gap, is widely used to manufacture LEDs that
produce red light in interband transitions with λ = 0.65 μm.

The GaxAl1−xAs alloy is also widely used to manufacture LEDs with high
efficiency. It is common to find devices made with heterojunctions of n-type
Ga0.3Al0.7As and p-type Ga0.6Al0.4As. In this system, electrons in the n-type are
injected into the p-side, where they produce transitions to the acceptor impurity
levels, as in Fig. 8.13a, with emission of photons with wavelength 0.65 μm (red).
The radiation produced on the p-side passes through the n-side without absorption,
since it has a larger energy gap, making the efficiency of these LEDs close to
100%. During the 1990s, the technology for manufacturing efficient LEDs with
GaN and its alloys was developed by Shuji Nakamura, Isamu Akasaki, and Hiroshi
Amano. As shown in Table 8.1, the energy gap of GaN is 3.4 eV, corresponding to
a wavelength of 360 nm, in the near ultra-violet region. The development of the
blue LED made possible the manufacture of panels containing clusters of LEDs
with the three basic colors of the visible spectrum, simulating a white light source.
Also, the use of UV LED inside glass bulbs internally covered with a phosphor
material, made possible the fabrication of efficient LED bulbs for lighting.
Nakamura, Akasaki, and Amano were awarded the Physics Nobel Prize in 2014
“for the invention of efficient blue light-emitting diodes which has enabled bright
and energy-saving white light sources”.

Figure 8.30 shows a typical structure of a Ga(AsP) LED that operates in the red
region. Similarly to photodiodes, the metallic contact on the top side has an opening
that serves for the window to allow the transmission of radiation. Usually, the p-side
is a thin layer on the top, made with doping much smaller than on the n-side. This
makes the radiation to beproducedon thep-side, close to the exitwindow, by electrons
injected from the n-side, which minimizes the absorption of radiation emitted at the
junction. The several layers of the LED structure are made by epitaxial growth over a
GaAs substrate. Since GaAs0.6P0.4 has a lattice parameter very different from GaAs,
it is not grown directly on the substrate, to avoid the formation of crystalline defects
that act as nonradiative recombination centers. This is the reason for having the

Metallic 
contactsGaAs1−xPx

Fig. 8.30 Typical structure of a light emitting diode (LED)
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Fig. 8.31 Typical structure
of LED lamps used in
indicators of electric and
electronic equipment

intermediate layer of GaAs1–xPx, shown in Fig. 8.30. It is made with a concentration
x that varies gradually from 0 to 0.4, so as to produce a matching between the crystal
lattice parameters of GaAs0.6P0.4 and GaAs.

LEDs that operate in the visible are widely used to make lamp indicators for
panels of electro-electronic equipment. These lamps are made with a wide variety of
shapes, sizes, and colors. Figure 8.31 shows a typical structure of a LED lamp. The
LED chip is mounted on one of the metallic pins used as an external terminal. The
contact with the other terminal is made by a wire welded on the metallic film on the
side of the LED window. The set is encapsulated in a colored plastic, with an upper
part in the form of a lens, to partially collimate the radiation.

The most important applications of infrared LEDs are in optical communication
systems. They are made mainly with the quaternary alloy GaxIn1–xAsyP1−y.
Depending on the concentrations, the LED made with this alloy can emit in any
wavelength in the range 1.1–1.6 μm, used in optical communications. As will be
shown in Sect. 8.8, these systems are based on the transmission of information by
means of an infrared light beam, which propagates confined in an optical fiber with
a diameter of some μm. The LEDs used for this purpose are made with the
structure shown in Fig. 8.32, known as Burrus type, invented by Charles A. Burrus.

Fig. 8.32 Typical structure of the Burrus type LED
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Fig. 8.33 a Circuit symbol of a LED. b Simple LED supply circuit

In this structure, the metallic contact with the semiconductor is confined to a region
with diameter similar to that of the optical fiber. This makes the active light
emission region small, resulting in an efficient coupling with the optical fiber. The
fiber is rigidly mounted to the structure and secured by epoxy resin, as shown in
Fig. 8.32.

The supply circuits forLEDs are quite simple. Tohave light emissionwith constant
intensity one simply applies a DC current in the forward diode direction. In optical
communication systems it is necessary to incorporate a current modulation circuit
to produce the corresponding variations in the light intensity. Figure 8.33 shows the
circuit symbol of the LED and a simple power supply circuit. The series resistor Rs

is necessary to limit the current that passes through the LED, because as it operates
with forward bias, its resistance is very small.

LEDs that operate in the visible are also widely used today to make alphanumeric
light displays. Figure 8.34 shows two types of very common displays. The 7-segment
system shown in Fig. 8.34a is used to indicate the digits from 0 to 9. Each segment is

Fig. 8.34 Illustration of two types of LED displays. a 7-segment numeric display. bAlphanumeric
7 × 5 matrix display
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formed by a set of LEDs, connected in parallel and encapsulated in a same piece, in
order to produce uniform illumination throughout its length. Figure 8.34b shows the
7 × 5 matrix of individual LEDs, which allows to display digits and letters, forming
an alphanumeric display.

8.6 Stimulated Emission and Lasers

The radiation produced by a traditional light source, such as incandescent and
fluorescent lamps, or by a LED, consists of photons emitted spontaneously by
independent atoms or molecules. The spontaneous emission process occurs when
a quantum system changes from one state with a certain energy level to another one
of lower energy due to random fluctuations. As a result, the phase of the resulting
field varies randomly in space and time, so that the radiation is incoherent. Another
type of radiation is the one produced by a laser, a device known by the acronym for
Light Amplification by Stimulated Emission of Radiation. The radiation of a laser
results from the emission induced in atoms or molecules, or stimulated by a
macroscopic electromagnetic field. In this process, the phases of the fields of the
emitted photons are correlated, and as a result the radiation is coherent. In addition
to coherence, the radiation from a laser is highly monochromatic, that is, it has
frequencies in a narrow spectrum range. The intensity depends on the type of laser
and the magnitude of the excitation, and can vary over a wide range of values.

The development of the laser has a long history. In 1917, Albert Einstein
established the theoretical foundations for the laser by proposing the processes of
absorption, spontaneous, and stimulated emission of electromagnetic radiation.
After the development of quantum mechanics, there were several proposals for
related phenomena. Then, in 1950, Alfred Kastler proposed the method of optical
pumping, which was experimentally confirmed two years later by Brossel, Kastler,
and Winter. Kastler received the Physics Nobel Prize in 1966 for his contributions
to the development of the laser.

In 1953, Charles H. Townes and his graduate students J. P. Gordon and H. J.
Zeiger produced the first maser, a device operating on similar principles to the laser,
but amplifying microwave radiation. In the following years, Charles H. Townes and
Arthur L. Schawlow, and independently Nikolay Basov and Aleksandr Prokhorov,
proposed detailed theories for the operation of lasers in the infrared and visible
regions. The Physics Nobel Prize was awarded to Townes, Basov, and Prokhorov in
1964, and to Schawlow in 1981. As previously mentioned, the first laser operating in
the visible region was the ruby laser, invented in 1960 by Maiman. Several types of
lasers developed in the following years, such as other solid-state lasers and gas lasers,
have many applications in industry, in medicine, and in science. The semiconductor
lasers operating at room temperature, developed at the end of the 1960s, set the stage
for a revolution in optical communications, that made possible high-speed Internet
and video communication.
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The main components of a laser are: the active medium containing the atoms or
molecules that produce the radiation emission; the resonator or optical cavity; and
the pumping mechanism. The cavity is formed by two mirrors, one perfect and one
partial, that reflect the radiation back and forth through the active medium between
them. The radiation is emitted through the partial mirror. The structure resonates at
certain wavelengths, resulting in a macroscopic electromagnetic field that produces
the stimulated emission in the atomsormolecules in the activemedium.This emission
amplifies the field in the cavity and maintains the laser radiation. The main features
of the laser are determined by the nature of the active medium. We begin this section
by studying the mechanism of stimulated emission, that is essential to understand
the role of the active medium.

8.6.1 The Mechanism of Amplification by Stimulated
Emission

As we saw in Sect. 8.3, a quantum system with two energy levels, E2 > E1, with
populations N2 and N1, has an absorption coefficient given by Eqs. (8.14) and (8.56)
that can be written as

α = 2
ω

c
κ = 4πω

n c ε0 �
(N1 − N2) p2

12 D(ω), (8.76)

where p12 is the matrix element of the electric dipole moment between the two levels
and D (ω) represents the spectral line shape of the transition between the two levels.
When a radiation with frequency ω crosses the medium, its intensity varies in space
according to Eq. (8.13)

I (x) = I (0) e−α x

In thermal equilibrium, the population N1 in the lower energy level is larger than
in the higher energy level,N2, so that α > 0. In this situation, the radiation is absorbed
by the transitions from E1 to E2, so that its intensity decreases as it propagates in
the medium. However, if there is an external mechanism for population inversion,
making N2 > N1, we have α < 0, so that the radiation is amplified by the stimulated
emission. Thus, for N2 > N1, we define the radiation gain of the medium as γ (ω) =
− α (ω). Naturally, the system has losses, mainly caused by the radiation that comes
out of the resonant cavity. In this way, it is necessary that the pumping process causes
the population inversion to exceed a threshold value (N2 – N1)T such that the total
gain is larger than the total losses. In this situation the system generates radiation by
stimulated emission.
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The threshold value of the population difference is determined by the condition
forwhich the intensity gain over the length of the activemedium is equal to the losses.
Losses have two origins, the attenuation along the beam, caused by diffraction and
by interactions with other excitations, and radiation loss out of the optical cavity. The
first is large for frequencies different from the cavity resonance frequencies. For this
reason, the laser operates only at the wavelengths corresponding to the resonances
of the cavity, given by

λ′ = 2 L

m
, (8.77)

where λ′ is the wavelength in the active medium, L is the distance between the
cavity mirrors, and m a positive integer number. Considering that λ′ is related to the
wavelength in vacuum (practically equal to air) by λ = n λ′, where n is the refractive
index of the medium, we obtain for the laser operating frequencies,

ν = c

λ
= m

c

2nL
. (8.78)

Lasers operate at one or more frequencies given by this expression that are in the
rangeof the gain curve of the activemedium. In general, lasers operate simultaneously
in various cavity modes, called longitudinal modes, each with a line width of few
MHz, which is much less than the width of the gain curve. For example, the gain
curve of the He–Ne gas laser has a width of about 1.5 GHz, which supports 10
longitudinal modes spaced by 150MHz, which is the value obtained from Eq. (8.78)
for an optical cavity with length of 1.0 m and n = 1. Figure 8.35 shows a typical
spectrum of a He–Ne laser.

Fig. 8.35 Light emission spectrum of a He–Ne laser showing the longitudinal modes
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Fig. 8.36 Illustration of the gain curves of a laser for three values of the population difference
�N = N2 − N1, with �N3 > �N2 > �N1

Figure 8.36 illustrates the behavior of the gain curve γ (ω) of a laser, for three
values of the population difference �N = N2 − N1. In curve 1, �N is such that the
gain is less than the total loss rate at any frequency value. In this situation, the laser
does not emit radiation. Curve 2 corresponds to the rate of threshold pumping, for
which �N is such that the maximum of γ (ω) is equal to the loss rate. With a
higher pumping rate, the gain is larger than the loss in a certain frequency range. In
this situation, the system maintains a radiation with frequency ωc determined by
the resonant cavity. The dip that appears in curve 3 results from the fact that the
intense radiation created in the cavity increases the transitions from level 2 to level
1, so that the two populations tend to become equal. The steady-state operating
regime is reached when the gain rate is equal to the loss rate. The essential
requirement for stimulated emission of radiation is to have a net gain produced by
the population inversion in the active medium. There are several methods for
inverting the populations in two-level systems, the most important of which are:

• Optical pumping or photon excitation;
• Electronic excitation;
• Inelastic collision between atoms;
• Injection of carriers in semiconductors.

The population inversion between two levels involved in the stimulated emission
in homogeneous systems requires the existence of at least another quantum energy
level. Figure 8.37 shows two modes of operation in a three-level system. In (a) the
atom is excited from the ground state E1 to a state with energy E3 by means of
some efficient pumping process. Then the system relaxes from E3 to E2 by fast
and not radiative transitions, causing an accumulation of population at level E2 and
population inversion relative to the level E1. The laser radiation then occurs by
transitions from the level E2 to E1. Figure 8.37b illustrates another possible mode of
operation in a three-level system, in which radiation occurs in transitions from the
higher level to another intermediate level, which in turn relaxes to the ground state.
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Fig. 8.37 Stimulated emission processes in 3-level systems

Optical pumping processes use an external light source, which can be a
high-power flash lamp, or another type of laser, to increase the population of a band
above the two levels of interest. This method of excitation is used in lasers with
solid materials, called solid-state lasers, either in crystalline form, such as sapphire
and yttrium aluminum garnet (YAG), or glasses, doped with appropriate impurities.
Electronic excitation processes are generally used in gas lasers. In an electric
discharge in a gas, electrons of the current are accelerated by the applied voltage
and collide with ions of the gas. In this collision they transfer energy to the ions,
producing electronic transitions from the ground state to excited states. This is the
process used in argon lasers.

Another important pumping process in gases is the atom-atom collision, in which
during an electric discharge a certain type of atom collides with another type, leaving
the latter in an excited state to radiate. This process is important in lasers with gas
mixtures, such asHelium-Neon. Finally, another importantmethod is that of injection
of carriers in a semiconductor junction. As we saw in Sect. 8.5, the electric current
in a p+-n junction causes holes on the p+-side to diffuse into the n-side, resulting
in an excess of holes relative to electrons. Thus, in the junction region there is
a population inversion, in the sense that there are more minority carriers than in
thermal equilibrium. This results in the recombination of electron-hole pairs and in
the generation of photons, by spontaneous emission, as in a LED, or by stimulated
radiation, as in the semiconductor laser. In the following subsections we shall present
some details of several commercially important lasers. Due to its major importance
in optoelectronics, the semiconductor diode laser will be presented in more detail in
the next section.

8.6.2 Solid-State Lasers

The active medium in solid-state lasers is a piece of transparent crystalline material,
or glass, in the form of a cylinder (rod), slab, or block, doped with impurity ions
that have energy levels suitable for stimulated emission. The optical cavity is, in
general, formed by two external mirrors, one of which is fully reflective while the
other transmits a small fraction of the incident radiation. It is through the partial
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mirror that part of the radiation energy stored in the cavity is transmitted outwards,
producing the laser beam. The excited states of the impurities are populated by optical
pumping, produced by flash lamps or by another laser.

Figure 8.38 shows the arrangement used in the original ruby laser. Ruby is a
sapphire crystal,Al2O3, containingCr3+ impurities in small concentrations, from0.01
to 0.1%. The energy levels of the Cr3+ ions inAl2O3 and the three transitions involved
in the laser action are shown in Fig. 8.14. The optical pumping takes electrons from
the ground state, level 1, to a relatively broad energy band 3. Then, the electrons
decay in a short time, of the order of 10−8 s, to level 2. Since the decay time from 2
to 1 is relatively long (∼10−3 s), there is an accumulation of electrons at level 2, and
hence inversion of population relative to level 1. The stimulated emission from 2 to
1 generates the red light of the ruby laser, with wavelength 694.3 nm. Since the flash
lamp is activated by the discharge of a capacitor, indicated in Fig. 8.38, the pumping
light is in the form of pulses with duration of few ms. For this reason, instead of
generating continuous radiation, the laser emits light pulses with a repetition rate
determined by the circuit of discharge-flash lamp. The choice of the repetition rate
depends on the ability to cool the ruby rod. This cooling can be done by circulating
water in contact with the rod, as shown in Fig. 8.38. In current solid-state lasers
with impurities that use a flash lamp, this is not wrapped around of the rod, as in the
original arrangement of Fig. 8.38. The lamp is a cylindrical tube, placed parallel to
the solid rod, inside a metallic cavity, with elliptical section, internally polished. The
lamp is placed in one of the foci of the ellipse and the rod in the other, so that the
radiation from the flash is focused on the rod.

One of the most important solid-state lasers employs for active medium a crystal
of yttrium aluminum garnet (YAG), that has chemical formula Y3Al5O12, with
neodymium impurities. The so-called Nd-YAG laser action occurs in the energy
levels of the Nd3+impurities. Figure 8.39 illustrates the energy levels and the
important transitions of the Nd-YAG laser. The optical pumping, produced by the
radiation of a flash lamp, or a semiconductor diode laser, takes the electrons from
the ground state to a broad energy band of excited states. From there they fall to the

Fig. 8.38 Arrangement used in the ruby laser pumped by a flash lamp
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Fig. 8.39 Energy scheme
and electronic transitions
responsible for the radiation
with wavelength 1064 nm in
the Nd-YAG laser

4F3/2 state by means of non-radiative transitions. The transition from this state to
4I11/2 produces laser radiation at a wavelength λ = 1064 nm, situated in the near
infrared. The gain of the Nd-YAG laser is about 75 times larger than in ruby. For
this reason, it can be pumped with continuous light from a diode laser, as shown in
Fig. 8.40. The beam of the diode laser passes through two lenses and is focused on
the axis of the Nd-YAG rod. The entrance surface of the rod is spherical and
covered by dielectric layers that transmit the 809 nm radiation and reflect the
1064 nm radiation. The flat surface at the other end has a reflective layer, forming
the optical cavity. When operated with flash lamps, it reaches quite high peak
powers. Despite operating in the infrared, the Nd-YAG laser is widely used for
applications in the visible region. This is achieved by passing the pulsed beam
through a second-harmonic generator crystal, that converts most of the radiation
into green light, with wavelength 532 nm (See Sect. 10.2.2).

Solid-state lasers pumped by a light beam from a diode laser, as in Fig. 8.40,
produce continuous wave (CW) radiation. Lasers pumped by flash lamps produce
light in the form of pulses emitted periodically. The pulses are long, lasting a few
ms, and the repetition rate is low, with few shots per second, because these are

Fig. 8.40 Nd-YAG laser pumping scheme with continuous radiation from a semiconductor diode
laser
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characteristic of the electric discharge in flash lamps. Pulsed lasers are important in
applications that require high power light pulses, since the energy accumulated in the
period is emitted in a much shorter time span. There are other methods for producing
light pulses in solid-state and other types of lasers, such as gas and liquid dye lasers,
with continuous pumping. Two methods that enable to obtain very short pulses are
Q-switching and mode-locking. In both methods, the cavity mirrors are outside the
active medium, since the mechanism requires the insertion of a device in the beam
path within the cavity.

TheQ-switchingmethod consists of deteriorating theQ-factor of the optical cavity
during a certain time, preventing the laser action. Since the pumping is continuous,
during the time theQ is low and there is no stimulated radiation, the population of the
excited states increases and exceeds the threshold for light emission with the normal
Q. Then, periodically the Q is restored, providing the emission of high-power short
pulses. One of the mechanisms used to vary the Q is the modulation of the light
polarization by means of an electro-optic modulator (Sect. 10.2) placed inside the
cavity. In this mechanism, the light polarization is changed in one beam pass, so that
the beam reflected in a mirror has a polarization different from the incident one and
does not produce constructive interference necessary for the resonance.

The method of mode-locking also uses an internal modulation in the cavity, but
the mechanism is based on the existence of a large number of longitudinal modes, as
in Fig. 8.35. It can be shown that the amplitude modulation with frequency equal to
the separation of the modes produces a locking of the mode phases. Since they have
different frequencies, periodically the phases of all modes coincide, resulting in a
train of radiation pulses. The period of pulse emission is the inverse of the frequency
spacing between the modes.

Another solid-state laser widely used today due to its versatility is the titanium-
sapphire laser (Ti3+:Al2O3). This laser can operate in CW or pulsed regimes (Q-
switching or mode-locking). Ti3+ impurities have an absorption band with a peak
around 500 nm, as shown in Fig. 8.41, and a broad emission band, so that the laser
can operate in the entire 660 nm-1180 nm range, with proper use of filters and

Fig. 8.41 Absorption and
emission bands in
Ti–sapphire, Ti3+:Al2O3



8.6 Stimulated Emission and Lasers 321

mirrors in the optical cavity. Its conversion efficiency, defined as the ratio of the
emitted optical power by the electrical input power, is approximately 0.01%. This
value is low compared to the Nd:YAG laser (0.5%), but it is of the same order as in
gas lasers. The Ti-sapphire laser is commonly pumped by an argon laser (514 nm),
or by the second harmonic of a Nd:YAG laser (532 nm). For optical pumping powers
of the order of 10 W, about 1.5 W can be emitted in the Ti–sapphire laser in CW
regime. It also operates in a mode-locking regime, emitting ultrashort pulses. Since
the width of the Ti-sapphire transition line is 100 THz, pulses of duration as short as
10 fs (1 fs = 10−15 s) are produced by Ti–sapphire lasers.

8.6.3 Gas Lasers

In gas lasers, the stimulated emission occurs between quantum states of atoms or
molecules, which are usually excited by collisions in an electric discharge through
the gas. Figure 8.42 shows the basic components of a gas laser. The high voltage
applied to the electrodes at the ends of the tube maintains an electric discharge in
the gas, which may be confined or circulating. When the optical cavity is formed
by external mirrors, the ends of the tube are made with transparent parallel plates,
with an inclination at Brewster’s angle to minimize the reflection losses. In small gas
lasers, the mirrors are made inside, at the tube ends.

The helium–neon (He–Ne) laser was the first gas laser invented, and it is still
used today in simple low power applications. In the discharge through the mixture
of the two gases, the He atoms are easily excited by collisions. The excitations of
these atoms are transferred to the 2S and 3S states of Ne, which coincidentally have
almost the same energies of He. Transitions with stimulated emission occur in the
Ne atoms between the levels illustrated in Fig. 8.43, at the wavelengths indicated.
The 3S-3p and 2S-2p transitions occur in the infrared, while the 3S-2p transition has
λ = 632.8 nm, located in the red region of the spectrum. The He–Ne laser is simple
to manufacture and operates continuously with low current, which is why it is used
in a large variety of low power applications (few mW).

Fig. 8.42 Basic components of a gas laser
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Fig. 8.43 Energy levels and
laser transitions in Ne atoms

Another important gas laser with visible light radiation is the argon laser. It
operates with electronic transitions in the Ar+ ions, producing radiation in several
lines of the visible spectrum. The most intense one occurs at λ = 488 nm (blue) and
514.5 nm (green). Generally, argon lasers operate continuously with powers
ranging from hundreds of mW to dozens of watts, and have countless medical,
industrial, and scientific applications. In the category of molecular gas lasers, the
most important one is that of carbon dioxide, CO2. In this system, the quantum
levels involved in the laser transitions are associated with the vibrations of the CO2

molecule. The stimulated emission has a wavelength around 10 μm, corresponding
to mid-infrared radiation. The CO2 laser has an easy and robust construction and
produces CW power with tens to hundreds of watts, and is also widely used in
industry and medicine.

8.7 Semiconductor Lasers

The semiconductor laser, also known as diode laser, or semiconductor diode laser, is
by far the most important one for optoelectronics. While all lasers presented in the
previous section are physically big, expensive, and require significant electric power
to operate, the semiconductor lasers have submillimetric dimensions, low cost and
require low power supply. The semiconductor diode laser was invented in 1962, but it
took many years of research and development to have efficient semiconductor lasers
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such as the ones in current use. The first lasers were formed by simple GaAs junction
diodes operating only at the liquid helium temperature (4.2 K) with relatively high
currents.At the end of 1960s some laboratoriesmanaged tomaterialize the theoretical
proposals of Zhores Alferov and Herbert Kroemer, who showed that the laser gain
could increase with the confinement of electron and holes in heterojunctions.

Currently, semiconductor lasers are made with multiple heterojunctions of direct
gap semiconductor alloys, operate at room temperature, with low currents, and
produce light powers that vary from a few mW, comparable to those of the He–Ne
laser, to tens of watts. The semiconductor laser has become an essential component
for optical communication systems and for a wide variety of applications in
electronic equipment for household, industrial, medical, scientific, and other uses.
Due to the success of the heterojunction structure for the fabrication of efficient
semiconductor lasers, Alferov and Kroemer were awarded the Physics Nobel Prize
in 2000, together with Kilby, the inventor of the integrated circuits.

8.7.1 The p-n Junction Diode Laser

One of the basic mechanisms for the operation of a laser, the population inversion,
occurs naturally in a forward biased p-n junction made with a direct gap
semiconductor. This is because the electrons on the n-side that move towards the
junction region and are injected into the p-side, have in the conduction band on the
p-side concentration larger than the one in thermal equilibrium. A similar situation
happens with the holes in the valence band injected into the n-side. The
recombination of electron–hole pairs, that occurs to make the concentrations reach
equilibrium on both sides, produces spontaneous emission characteristic of the
LEDs. However, when the injection is strong enough, the threshold condition for
laser operation can be achieved and the diode emits stimulated radiation.

To achieve the laser threshold condition, the p-n junction must have large doping
on both sides, that is, it must be formed by degenerate semiconductors. At this
junction, the Fermi level EFn on the n-side is above the minimum of the conduction
band, Ecn, while on the p-side the EFp level is below the maximum of the valence
band, Evp. Figure 8.44 illustrates the energy bands in a junction of this type. In (a)
there is no applied voltage, so that the Fermi level EF is the same on both sides. In (b)
the junction is forward polarized with an external voltage V, so that the energies on
the p-side decrease relative to the energies on the n-side, and the difference between
the Fermi energies on the two sides is equal to eV. Finally, Fig. 8.44c shows what
happens with a larger voltage: in the transition region of the junction, the conduction
band is filled with electrons from the n-side, while the valence band receives holes
from the p-side. This produces population inversion in this region, which results in
high recombination rates accompanied by the spontaneous emission of light. The
photons created in this process that are confined to the junction region, make the
recombination rate to increase even more through the stimulated emission process.
The laser action occurs when the current in the diode exceeds a certain threshold
value for which the optical gain equals the losses in the system.
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Fig. 8.44 Energy diagrams
in a p-n junction formed by
degenerate semiconductors.
a No applied voltage.
b Forward biased with a
voltage V. c With a voltage
sufficiently large to produce
population inversion in the
transition region

The minimum frequency ν of the photons emitted in the band-to-band transition
is given by ν = Eg/h. On the other hand, due to the condition of population inversion
illustrated in Fig. 8.44c, we see that the maximum value of ν is given by EFn − EFp

≥ hν. Therefore, the operating condition of a p-n junction laser is

EFn − EFp ≥ hν ≥ Eg. (8.79)

To increase the gain and decrease the losses, and also to make the radiation go out
in only one direction, it is necessary to build an optical cavity at the junction. The
two flat and parallel surfaces that form the mirrors of the cavity are made through
the cleavage of the junction chip in the crystalline planes, as illustrated in Fig. 8.45.
Since the refractive index of GaAs is n = 3.6, the reflectivity of the surface, given by
Eq. (8.21), is R = 0.32. This value is sufficient to create an optical cavity between the
two cleavage planes. However, to increase the gain and make the radiation come out
in only one direction, one of the sides is covered with a metallic film. In addition, to
prevent radiation from coming out laterally, an abrasive is used to roughen the two
side surfaces. This eliminates the effect of the resonant cavity in the lateral direction,
so that the radiation beam leaves only from the front surface.
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Fig. 8.45 Illustration of a simple p-n junction diode laser

Figure 8.46 shows the behavior of the laser power and the radiation spectrum
with the current in the junction. Figure 8.46a shows that if the current is less than
a threshold value IT , the intensity of the radiation is small. In this situation the
radiation is produced by the spontaneous emission that occurs in the vicinity of the
junction, as in a LED. In this case, the radiation spectrum is wide, as illustrated in
Fig. 8.46b. However, if I > IT , the radiation becomes much more intense and with a
spectrum confined to a narrow band of frequencies. These two characteristics are the
main differences between the LED and the junction laser: the laser emits stimulated
radiation with a narrow spectrum, while the LED emits spontaneous radiation with a
wide spectrum; the laser only operateswith a current above a threshold value,whereas
the LED operates with any current. Actually, the diode laser operates with various
longitudinal modes, with frequencies within the range of the gain, as in Fig. 8.35

Fig. 8.46 Behavior of the light power emitted by a semiconductor laser. If the current I is larger
than a threshold value IT , the power increases sharply, as in (a), and its spectrum becomes narrow,
as in (b)
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Example 8.5 Calculate the spacing between the longitudinal modes of a GaAs
diode laser, with an optical cavity of length 1 mm.

Considering λ′ the wavelength of light in GaAs, the resonance condition in
the optical cavity is

L = m λ′

2
= m λ

2 n
= m c

2 n ν
,

where the n is the refractive index, λ is the wavelength in vacuum, and ν is the
frequency. Thus, the difference between the frequencies of two neighboring
modes (m and m ± 1) is�ν = c/2nL. Considering the refractive index of GaAs
n = 3.6, we have.

�ν = c

2 n L
= 3 × 108

2 × 3.6 × 10−3
= 4.17 × 1010 Hz = 41.7GHz.

The semiconductor laser formed by only one p-n junction, also called a
homojunction laser, was the first to be developed. This type of laser has several
problems, such as: its threshold current is very high; to avoid overheating it must be
placed at quite low temperatures or operate in pulsed mode; the spectral width of
the radiation is large compared to other types of lasers; the light power is small
compared with other types of laser; since the radiation is emitted in a region of
thickness (< μm) smaller than the wavelength, the diffraction is large, and the
output beam is not collimated. Several of these problems are circumvented in
heterojunctions lasers, presented in the next section.

8.7.2 Heterojunctions Lasers

In the homojunction laser, the population inversion that produces the recombination
of electron-hole pairs with photon emission occurs only in the space charge, or
transition, region, as shown in Fig. 8.44c. However, not all electrons and holes that
arrive at the junction participate in this process. Many of them are injected into the
other side as minority carriers and diffuse in a region of thickness in the range of
1–10 μm. Thus, for the photon emission rate to be larger than the optical losses and
to produce the laser operation, it is necessary to have large current densities. This fact
is the main reason for the high threshold current of the homojunction laser, which
is of the order of 40–100 kA/cm2 in GaAs junctions at room temperature. Another
effect that contributes to the high value of the threshold current in the homojunction
laser is the strong light diffraction. This makes a large fraction of emitted photons
leave the junction region, failing to contribute for the stimulated emission.
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In heterojunction lasers, these two effects are much smaller, so that the threshold
currents are reducedby several orders ofmagnitude relative to the homojunction laser,
and are in the range of 100–500 A/cm2. As we saw in Sect. 6.3.2, in a heterojunction
there is a potential barrier due to the difference between the energy gaps on the two
sides. This allows one to build heterojunction structures with potential barriers that
produce confinement of electrons and holes in a thin layer, with thickness of the order
of 0.1–0.5 μm. At the same time, since the refractive indices on both sides of the
heterojunctions are different, due also to the difference in the energy gaps, there is
a confinement of the emitted photons. The increase in the concentration of electron-
hole pairs and photons in the same spatial region, results in a larger recombination
rate and therefore lower threshold currents.

Figure 8.47 shows three possible structures for heterojunction lasers made with
GaAs and (GaAl)As. The structures are made by depositing layers with appropriate
thicknesses and compositions on a single crystal n-GaAs substrate. The deposition
can be made by the simple liquid phase epitaxy technique (LPE), or the sophisticated
molecular beam epitaxy (MBE) technique, described in Chap. 1. The concentration x
of Al in the alloy Ga1−xAlxAs determines the value of the energy gap Eg, that varies
from 1.43 eV (x = 0) to 2.16 eV (x = 1). The p-type semiconductor is made with
diffusion of group II atoms, such as Zn, forming acceptors impurities. For n-type
doping, elements of group IV are used, such as Sn. The atoms of these elements
donate electrons to the atoms of Ga or Al, which are in group III, forming donor
impurities.

Fig. 8.47 Heterojunction
structures of semiconductor
lasers: a simple
heterojunction; b double
heterojunction; c double
heterojunction with
stripe-geometry
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Fig. 8.48 Semiconductor
diode laser with a GaAs p-n
junction, and a
heterojunction
GaAs-(GaAl)As.
a One-dimensional model.
b Energy diagram in
equilibrium. c Energy
diagram with forward bias.
The dashed lines indicate the
Fermi levels. The blue
circles represent electrons
and the yellow circles
represent holes

Figure 8.48a shows the one-dimensional model of a laser with a simple p-n
junction of GaAs and a heterojunction of p-GaAs - p-Ga1−xAlxAs. Figure 8.48b
shows the energy diagram with no applied voltage and Fig. 8.48c shows the
diagram with forward bias. The central region of the structure is made of p-type
because the injection of electrons to the p-side is more efficient than injecting holes
in the opposite direction. When a voltage is applied to polarize the p-n junction in
the forward direction, electrons from the n-side are injected into the p-type central
region. The potential barrier created in the heterojunction prevents the electrons
from passing to the p-(GaAl)As region. Since the thickness of the central region is
much smaller than the diffusion length, the electron-hole pairs are confined in this
region and are uniformly distributed.

The difference between the refractive indexes of GaAs and GaAlAs causes
photons emitted by electron-hole recombination to be reflected at the interface
between the two materials, increasing the stimulated emission rate. Laser operation
occurs when the current exceeds a certain threshold value, with emission of
photons with energy approximately equal to the GaAs gap, Eg = 1.43 eV. This
corresponds to radiation in the near infrared region, with wavelength λ = 860 nm.

The development at the end of the 1960s of the heterojunction laser operating
at room temperature, boosted research activities in these lasers, mainly because of
their potential in optoelectronics and optical communications. During the 1970s
and 1980s, laboratories around the world competed to develop heterojunction laser
structures with smaller threshold currents, better collimation of the radiation beam,
and better operation stability at several wavelengths.
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Fig. 8.49 Dual heterojunction semiconductor laser. a One-dimensional model. b Energy diagram
with the polarized p-n junction, illustrating the motion of electrons (blue circles) and holes (yellow
circles)

The structure of Fig. 8.47b, called a double heterojunction, represents an advance
relative to the simple heterojunction because it increases the confinement of carriers
and photons in the central region. The structure and scheme of energy bands of
the double heterojunction are illustrated in Fig. 8.49. The fact that the GaAs layer
is located between two layers of GaAlAs, that have larger energy gap, makes the
potential well more pronounced for electrons in the conduction band and for the
holes in the valence band. A further improvement for the reduction in the threshold
current and laser beamwidth is achieved using ametal contact in the form of a narrow
strip, of width on the order of 20 μm, with the stripe-geometry shown in Fig. 8.47c.
The development of this double heterojunction structure represented amajor advance
for the practical use of semiconductor lasers in optical communications and other
applications.

Currently, semiconductor lasers use structures with several layers of alloys with
different concentrations of constituents and impurities. The objectives of the
sophistication of the structures are: reduction of the threshold current; improvement
of collimation and spectral distribution of radiation; greater stability of operation;
ease of modulation; and lower manufacturing costs within the quality standards for
the desired application. The semiconductor lasers are produced by various
techniques of epitaxial growth, such as LPE, MBE and MOCVD.

The semiconductor materials used in heterojunction lasers depend mainly on the
desired radiation wavelength. Table 8.2 shows the energy ranges covered by some
of the most important semiconductor alloys. The variation of the constituent
concentrations makes possible to tune the wavelength of the laser. (InGa)(AsP)
lasers are used in optical communications. One of the most important applications
of (GaAl)As in infrared lasers was the improvement in reading optical discs, or
compact discs (CD and DVD), that became very popular for sound and video
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Table 8.2 Wavelength bands
covered by various alloys
used for the manufacture of
semiconductor lasers

Alloy λ (μm) Region of spectrum

PbxSn1−xTe 7–30 Infrared (ir)

In1−xGaxAsyP1−y 1.1–1.6 Near infrared

GaxAl1−xAs 0.7–0.9 Near Infrared

GaxAl1−xIn1−yPy 0.6–0.8 Red and near ir

In1−xGaxN 0.4–0.5 Violet-blue

reproduction. On the other hand, the (GaAl)InP red lasers replaced the He–Ne gas
lasers in several applications, with the enormous advantage of being powered by
small batteries in portable structures. The (InGa)N lasers, with emission in the
violet-blue region of the visible spectrum, developed in the late 1990s, were very
successful in making possible high-definition digital video discs and, as mentioned
earlier, LED lamps for lightning.

8.7.3 Quantum-Well and Quantum-Cascade Lasers

The energy diagram of the double heterostructure laser in Fig. 8.49b represents the
variation in one dimension of the energy levels Ev and Ec, corresponding,
respectively, to the maximum of the valence band and the minimum of the
conduction band. Actually, in each section of the one-dimensional model in
Fig. 8.49a, electrons can occupy states with energy above Ec and holes can occupy
states with energy below Ev. As illustrated in the energy bands of Fig. 5.7, the
occupation of the excited states is due to the thermal energy. Thermally excited
electrons have energy in a range kBT above Ec and holes have energy in a range
kBT below Ev. For this reason, the radiation from the heterostructure laser has a
broad line, which at room temperature is on the order of kBT /h = 6 THz.

However, if the GaAs layer is very narrow, the effects of quantum confinement
become important. In this case, the states of electrons and holes cannot be described
by waves propagating in the longitudinal direction. They are described by stationary
waves, similar to a particle in a potential well, as studied in Sect. 3.3.2.

Figure 8.50 illustrates the energy diagram of a heterojunction of
(GaAl)As/GaAs/(GaAl)As, exhibiting the potential wells for electrons in the
conduction band and for holes in the valence band. In the thin GaAs layer, the
minimum energy of electrons is E1, not Ec, while the maximum energy of holes is
E ′
1, and not Ev. The potential wells created by the difference between the energy

gaps of GaAs and (GaAl)As, have depths that depend of the concentrations of Ga
and Al. As shown in Table 8.1, for high concentrations of Al, the energy gap
approaches 2.16 eV, while the gap in GaAs is 1.43 eV. Thus, in heterojunctions of
alloys with high concentrations of Al, the depth of the well in the conduction band
is of the order of 0.5 eV. Since this value is much larger than the thermal energy of
electrons, kBT = 0.026 eV at room temperature, the effect of quantum confinement
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Fig. 8.50 Energy diagram
of a quantum-well laser

E2
E1

E3

(GaAl)As (GaAl)AsGaAs

in thin layers of GaAs is quite pronounced. The exact calculation of energy levels
for the well in Fig. 8.50 is more complex than the one for the infinite potential well,
presented in Sect. 3.3.2. However, if the thickness lx of the GaAs layer is not too
small, the level E1 close to Ec can be calculated approximately as if the depth were
infinite. Thus, we use Eq. (3.44) with n = 1 to calculate, in a first approximation,
the lowest energy level of electrons in the well

E1 = Ec + �
2π2

2m∗
el2x

. (8.80)

Likewise, the highest energy level of holes is

E ′
1 = Ev − �

2π2

2m∗
hl2x

. (8.81)

We see that in the double heterostructure laser with a thick GaAs layer, E1

approaches Ec and E ′
1 approaches Ev. In this case, the effects of the confinement

are small. The laser radiation has a frequency given by Eq. (8.79) and a linewidth
of kBT /h. On the other hand, if the thickness lx is small, such that E1 − Ec given by
Eq. (8.80) is comparable or larger than the thermal energy, the radiation spectrum
has a narrow line and the frequency is given by the difference between (8.80) and
(8.81), that is

h ν = Eg + �
2π2

2 l2x

(
1

m∗
e

+ 1

m∗
h

)
. (8.82)

The double heterostructure laser with small lx is called quantum well laser, or
QW laser. Quantum well lasers have a structure like the one in Fig. 8.47c, where the
p-GaAs layers have a thickness of the order of 10 nm. The main advantages of the
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quantum well laser are: the linewidth of the radiation spectrum is narrower; the laser
frequency can be tuned by choosing the appropriate thickness lx, and can be larger
than the frequency of the GaAs emission.

One disadvantage of the simple quantum-well laser is the small area for
recombination of the electron-hole pairs, which compromises the intensity of the
radiation. This problem is solved with a multiple quantum-well (MQW) laser,
also called quantum-cascade laser (QCL), formed by dozens of alternating layers
with the periodic repetition of the basic unit of Fig. 8.50. The first (GaAl)As layer
is deposited on the n-GaAs substrate and doped with donor impurities, to make a
n-(GaAl)As layer. All other layers, made alternately of GaAs (thickness of 10 nm
or less) and (GaAl)As (thickness of order of 10 nm or more), are doped with
acceptor impurities. Since the diffusion length is of order or larger than 10 μm, the
electrons injected by the set n-GaAs/n-(GaAl)As reach all layers of the set
(p-GaAs/p-GaAlAs)m, even if the number m of repetitions is a few dozens. It is also
important to note that since the distance between two neighboring wells is smaller
than the radiation wavelength, the stimulated emissions of neighboring wells are
synchronized, so that the total radiation is coherent.

Quantum-cascade lasers are manufactured by the same production techniques as
the heterostructure lasers, that had a major evolution in the 1990s, enabling growth
of thin layers of semiconductors with great precision and reliability. One advantage
they have relative to diode lasers is that the radiation wavelength is determined by
the structure of the layers rather than the lasing material. Thus, device fabricators
can tailor the wavelength in a way that cannot be achieved with diode lasers. While
diode lasers have wavelength limited to ~2.5 μm, QCLs operate at much longer
wavelengths: mid- and long-wave infrared production devices up to 11 μm are
available, and some 25 μm emitters have been made on an experimental basis.
They are finding new applications in precision sensing, spectroscopy, medical,
scientific, and military applications.

Example 8.6 Calculate for a quantum-well laser of (GaAl)As/GaAs(lx)/
(GaAl)As, the thickness lx for which: (a) The energy E1 − Ec is equal to the
thermal energy of the electrons at a temperature T = 300 K; (b) The laser
emission has a wavelength of 820 nm.

(a) The thickness lx that satisfies the given condition is obtained by equating
the energy difference in Eq. (8.80) with the thermal energy. Thus,

E1 − Ec = �
2π2

2m∗
el2x

= kB T,

so that

lx = �π

(2m∗
ekB T )1/2

.
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Using for the effective mass of electrons m∗
e = 0.068m0 (Table 5.1) we

have

lx = 1.05 × 10−34 × 3.14

(2 × 0.068 × 9.1 × 10−31 × 1.38 × 10−23 × 300)1/2

= 1.46 × 10−8 m = 14.6 nm.

Note that thinner GaAs layers result in an energy spacing E1 − Ec larger
than the thermal energy, and therefore exhibit quantum confinement effects.

(b) The thickness lx which results in laser radiation with photon energy hν

is obtained from Eq. (8.82)

lx = � π

21/2(h ν − Eg)1/2

(
1

m∗
e

+ 1

m∗
h

)1/2

.

The wavelength 820 nm corresponds to a photon energy

hν = hc

λ
= 6.62 × 10−34 × 3 × 108

820 × 10−9 × 1.6 × 10−19
= 1.51 eV.

Using Eg = 1.43 eV for GaAs, we have

hν − Eg = 0.08 eV = 1.28 × 10−20 J.

Using this value and m∗
h = 0.5m0 (Table 5.1) in the expression for lx we

have

lx = 1.05 × 10−34 × 3.14

(2 × 1.28 × 10−20 × 9.1 × 10−31)1/2

(
1

0.068
+ 1

0.5

)1/2
= 8.86 × 10−9 m.

lx = 8.86 nm.

Note that, since the GaAs lattice parameter is 0.565 nm, this GaAs layer
thickness contains about 16 basic units of quantum wells.
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8.8 Some Applications of Semiconductor Lasers and Other
Types of Lasers

Semiconductor lasers have become essential components in a large number of
equipment and systems developed in recent times. Their applications range from
very simple equipment, such as the laser pointer, to sophisticated high-speed
optical communication equipment that connect the entire Globe. Many systems had
their performance improved and the cost reduced with the replacement of the light
sources by semiconductor lasers, such as the optical bar-code scanners used in
stores, and a large variety of scientific, medical, and industrial equipment, for
example. Other equipments have become possible with the development of the
semiconductor lasers, such as optical compact discs used in CD and DVD players.
Each application requires a laser with radiation of specific wavelength and other
characteristics, and therefore employs specific materials and structures. In general,
semiconductor lasers are made with double heterostructures, but certain
applications require structures with multiple quantum wells. The development of
laser materials, structures, and manufacturing processes is an area of research
activities in many academic and industrial laboratories around the world. In this
section we shall address only two of the most important applications of
semiconductor lasers, optical communications and compact disc players.

8.8.1 Optical Communications

The advent of optical communications was made possible not only by the
development of semiconductor lasers and photodiodes, but also optical fibers. The
optical fiber is a thin wire with a circular cross section, made of a transparent
material, in general glass or plastic. Optical fibers are relatively flexible and are
used to guide a light beam through winding paths without interference from the
outside.

The basic idea of using an optical fiber as a light guide is very old. A light beam in
a transparent material with refractive index n1, incident on the interface with another
material with refractive index n2 < n1, undergoes total reflection if the incidence angle
θ1 (relative to the normal) is larger than a critical value given by θ c = sin−1(n2/n1).
Thus, a light beam can propagate within a solid cylinder, undergoing successive
reflections on the internal surface so as to be guided along the cylinder. Optically
transparent glass or plastic fibers are used as light waveguides for simple applications
since the 1930s. However, only after the 1970s optical fibers made of silica (SiO2)
with low losses were developed, making possible to guide light beams for very large
distances. The major contribution of Charles K. Kao for the development of low-loss
silica optical fibers earned him the Physics Nobel Prize in 2009.

The simplest optical fiber is made of homogeneous material with a certain index
of refraction n > 1. This fiber is not very useful because its contact with any external
material, such as dirt on the surface, can result in scattering and loss of the guided
light energy. For this reason, optical fibers are made with two regions, a central core
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Fig. 8.51 a Section of an optical fiber showing the core, the cladding, and the jacket. b Step
refractive index profile. c Graded index profile

with radius R1 and refractive index n1, and a cladding with external radius R2 > R1

and refractive index n2 < n1. In this way, the total internal reflection occurs at the
interface between the core and the cladding, so that the propagation is not disturbed
by external interferences.

Figure 8.51 shows the section of an optical fiber and the two common refractive
index profiles. In the step-index fiber, both the core and the cladding are
homogeneous, so that n1 and n2 do not vary with the radius. Its main applications
are in lighting and image systems. In the graded-index fiber, the refractive index
of the core varies with the radius, n1(r), while the cladding is homogeneous. A very
common profile form is parabolic, in which n1 decreases from the axis with the
square of the radius. The most used material for the manufacture of optical fibers is
fused silica. The variation in the index of refraction is obtained in the
manufacturing process through suitable doping with various materials, such as
GeO2, P2O5, B2O3, etc. For specific applications some types of glass are also used.
The protection of the optical fiber is made by a plastic jacket, similar to the ones
used in various types of wires.

The propagation of light in an optical fiber is illustrated in Fig. 8.52. In a
step-index fiber, the light behaves as if formed by rays that propagate in a straight
line, undergoing successive reflections at the internal surface of the cladding. In the

Fig. 8.52 Illustration of the light propagation in optical fibers. a Step-index fiber. b Graded-index
fiber
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graded-index fiber, the trajectories of the rays are curved because they undergo
continuous refraction due to the variation of the refractive index n1.

Actually, the view of the wave formed by rays is a simplification of the
phenomenon. The propagation of the wave guided by the fiber is described
mathematically by the solutions of Maxwell’s equations in the cylindrical geometry
of the fiber. These solutions correspond to discrete modes of propagation, which
can be seen as propagating waves along the fiber axis and stationary wave modes in
the cross section. Stationary-wave modes are similar to the wave functions of a
particle in a potential well, as in Fig. 3.3, with a certain number of maxima and
zeroes of the field along the diameter. Larger diameter/wavelength ratios give larger
numbers of maxima. In the simplified view of geometric optics, each
stationary-wave mode corresponds to a different angle for the propagation of rays.
Thus, fibers with larger diameters can support larger number of propagating modes.
A step-index fiber, with core diameter of 125 μm, can propagate thousands of
modes with wavelength 0.85, and is called multimode fiber. A fiber that allows
propagation of only one mode is called single-mode fiber. The transverse variation
of the electromagnetic field in the cross-section of a single-mode fiber is similar to
electron wave function of the mode with n = 1, shown in Fig. 3.3. Single-mode
fibers have a core with a diameter of about 5–10 μm and cladding with diameter of
125 μm.

A very important characteristic of optical fibers is the dependence of the light
intensity attenuation with the wavelength. This is shown in Fig. 8.53 for silica fibers,
with the vertical scale expressed in dB/km. The decibel value of an attenuation A is
given by A(dB) = 10 log10 A. Thus, an attenuation by a factor 10 corresponds at
10 dB, 100 corresponds to 20 dB, 1000 to 30 dB, etc. This notation is convenient
to express multiplicative quantities, because the values in dB add up. For example,
since the total attenuation in two consecutive stretches of fiber is the product of the
attenuations in each one, the value in dB is given by sum of the individual values in
dB.

Fig. 8.53 Light attenuation
in silica optical fibers as a
function of wavelength
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Fig. 8.54 Basic components of optical communication systems

Figure 8.53 shows three attenuation curves. The dashed curve corresponds tofibers
used until the mid-1990s. The peaks in attenuation at 1240 nm and 1390 nm are due
to vibrational modes of impurity ions OH− caused by the presence of water dissolved
in the glass. The solid curve corresponds to commercial fibers manufactured today
by processes that reduce the presence of impurities. The dash-dot line corresponds
to fibers produced in research laboratories and allows the use in a continuous range
of wavelengths.

Figure 8.54 shows the basic components of an optical communication system.
The transmitter is composed of a light source and a driver circuit. The light source
is a semiconductor laser. The driver circuit serves to polarize the laser and also to
modulate the light with the input electric signal. The light signal generated by the
transmitter is guided by the optical fiber to the receiver, where it is converted into
an electric signal in the photodetector, amplified and then processed to restore the
original signal. In communications over long distances, repeaters are used to amplify
the signal between the transmitter and the receiver. The major advantage of optical
communication relative to microwave-based systems is the wide spectral width, that
allows transmission over a single fiber of thousands of voice and video channels.
With the increasing digitalization of information, the capacity of the communication
systems started to be expressed in terms of the pulse transmission speed, in bits per
second (bit/s).

The first commercial optical communication system was implemented in the
second half of the 1980s, operating with GaAs semiconductor lasers, with
wavelength around 800 nm and repetition rate of 45 Mbit/s. Since the attenuation
of fibers in this region is high, about 2 dB/km, there was a need to have repeaters at
every 10 km. The repeaters used at that time were based on electronic amplifiers
devices, so that they had to detect the optical signal, amplify the electric signal, and
then modulate a new laser beam. In the 1980s, systems operating around 1300 nm
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were developed, where the fibers have attenuation of about 0.6 dB/km. They
employed semiconductor lasers of InGaAsP, able to operate with rates up to
2 Gbit/s, and with a distance of 44 km between repeaters, which used
optoelectronic amplifiers. Later, systems were developed for 1550 nm, in which the
fibers have attenuation of 0.2 dB/km, being able to transmit at distances of 70 km
without the need of repeaters. These systems use InGaAsP lasers with a higher In
concentration, operating in the range of 10–40 Gbit/s.

What made possible a major increase in the transmission speed was the
development of the optical amplifier at the end of the 1980s. An optical amplifier
consists basically of an optical fiber with rare earth impurities. In the range around
1550 nm, silica fibers are used with Er doping, while at 1300 nm, doped fluorate
glasses are used with Pr. These impurities have energy levels that absorb radiation
in the visible and emit in the infrared. When pumped by a semiconductor laser, this
system amplifies an optical signal that propagates in the fiber by means of
stimulated emission. Optical amplifiers enabled the advent of a new area of
technology, in which signal processing is entirely optical, called photonics. In
Sect. 10.2 we present some optical devices based on dielectric materials that are
used in the processing of optical signals.

The signal amplification and processing by optical means made possible to
increase the distance between repeaters. The first totally optical commercial
systems appeared in 1990, operating at 10 Gbit/s, and required distances of
60–80 km between repeaters. The scientific advances in electronics and in
photonics made possible the development of a new technology of transmission of
several channels on a single fiber, namely wavelength division multiplexing
(WDM), which enabled a large increase in the bit rate. Currently, communication
systems operate with transmission rates of a few 1Tbit/s. The wavelength bands
used in optical communication are indicated in Fig. 8.54 and are denoted by letters
established by the International Telecommunication Union (ITU). The S band
corresponds to the wavelength range from 1460 to 1530 nm, the C band is between
1530 and 1565 nm, and the L band is between 1565 and 1625 nm.

8.8.2 Recording and Playback on Compact Discs

An application of semiconductor lasers that became very important at the end of
the 90s was recording, initially in compact discs (CD) for sound reproduction,
and then in digital video discs (DVD) for video playback. They were also widely
used for recording, storing, and reading digital information in computers. The main
advantages of these devices over other recording systems existing at the time, mainly
magnetic, are in the large storage capacity of optical discs, easy of transport, and
the fact that the reading process does not require physical contact with the disc.
Figure 8.55 illustrates the basic elements for storage and reading on optical discs.

In the optical discs for permanent storage, the digital information is recorded in
the form of small pits, shown in Figs. 8.55b, c. The pits have long oval shape with
dimensions of the order or less than 1 μm, arranged along a spiralling track. The
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Fig. 8.55 Basic elements of a CD system. a View of the optical disc. b Illustration of the pits in
the disc tracks and the focusing of the reading laser. c Lateral view of the pits obtained by cutting
the disc along a track. The light reflected from the bottom of the pit with depth λ/4, lags the light
reflected from the top by 180°, producing destructive interference

presence of the pit in a certain position represents bit 1, and the absence represents bit
0. The disk is made of a plastic material, and its preparation can be made by means
of an injection process on a flat metallic matrix, containing bumps in the positions
that will produce the pits. After the injection, the surface containing the pits in the
spiral track is metallized with an aluminum film to reflect light. Finally, the disc is
covered with a transparent polymer film to protect the pits and form a smooth final
surface, to avoid the accumulation of dirt.

Thermo-optic CD recording systems were developed in late 90s for permanent or
rewritable storage, compatible with the earlier systems. In this case, the blank CD
consists of a uniform polymer layer, over a flatmetallic film. The process of recording
a bit 1 in a small region of the layer is made by heating, produced by pulses from
a semiconductor laser, focused by a lens, that produces a change in the refractive
index of the material after it cools. The depth of the recast region is such that in the
reading process, the part of the light that passes through it and is reflected by the
metal film has a lag of 180° with respect to the other part. This produces destructive
interference in the light indicating the presence of bit 1, as in the traditional CD. This
is also the reading process in discs with pits, as shown in Fig. 8.55.

The dimensions shown in Fig. 8.55b are typical of CDs for sound and for digital
storage in computers. The reading lasers, in this case, areGaAsdouble heterostructure
or QCL, operating in the infrared with a wavelength of 780 nm. Video or DVD discs
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require larger storage capacity. For this reason, the dimensions of the pits and the
distance between tracks are about 50% smaller, and the reading lasers operate in the
red, with wavelength 650 nm. The development of semiconductor lasers operating
in the blue made possible to reduce the dimensions of the pits and tracks resulting
in larger storage capacity, for use in for high-definition DVD and other applications,
with the technology called blue-ray.

8.8.3 Other Types of Lasers

Besides the several lasers described in this chapter, other types of lasers with more
unsusal properties have been developed more recently. To conclude this chapter, let
us briefly present three types with interesting characteristics and applications, fiber
lasers, nanolasers, and random lasers.

In fiber lasers the gain medium is an optical fiber doped with impuritites of rare-
earth elements that provide the electronic energy levels for the stimulated emission
of radiation. This type of laser was first demonstrated in the 1960s, but only in the
last two decades it became practical and began to be fabricated commercially. In the
first fiber lasers the cavity was is formed by two mirrors placed externally. In modern
fiber lasers, the cavity mirrors are directly inscribed in the gain fiber core by means
of a Bragg grating, made by means interferometric methods using ultraviolet light.
Single-mode or multimode fibers can be employed, and the rare earth ions used for
the gain are Nd, Er, Yb, Pr, etc., depending on the desired wavelength and power.
The pumpmechanism is usually optical, either longitudinally or transversely. A fiber
laser can be a very compact device, optically pumped by a semiconductor laser, and
can operate in continuous mode, Q-switched, or mode-locked. An advantage of fiber
lasers over other types of lasers is that the laser light is both generated and delivered by
an inherently flexible medium, which allows easier delivery to the focusing location
and target. Another advantage is the high output power that can reach 1 kW. The
mechanical flexibility and the high power make fiber lasers an important industrial
tool for laser cutting, welding, and folding of metals and polymers.

As the prefix nano implies, nanolasers are coherent-light emitting devices with
nanoscale dimensions. In these lasers the light is generated from nanowires or other
nanostructures that encompass the gain medium and resonator. Early studies of
ultrasmall lasers started in the 1990s, but the development of nanolasers boosted in
the early 2000s, aiming at ultracompact and very low power consumption coherent
optical sources. But soon it was realized that many other features would be
important as the device dimensions became of the order of the wavelength of the
emitted light. For example, the light-matter interaction in nanostructures is
different than in macro media. Currently, nanolasers are fabricated with several
different structures, such as metallic nanodisks, semiconductor nanowires,
plasmonic nanowires, among others. These structures have dimensions that can
range from 20 nm to a few micrometers. Nanolaser arrays have also being
demonstrated. The applications of nanolasers include their ability to be
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fast-modulated, on-chip optical computing, ultra-dense data storage,
nanolithography, super-resolution imaging, among others.

As we have shown in this chapter, the common lasers are formed by three basic
elements: the pump source, the gain medium, and a set of two static mirrors to form
the cavity and provide optical feedback. However, in late 1960s, it was proposed
that the mirrors could be replaced by a scattering medium, which in turn would
provide the optical feedback. After some attempts to build such a laser with rare
earth doped powders in the 1970s and 1980s, in 1994 a laser using a Rh6G dye as the
gain medium, the second harmonic of a Nd-YAG laser (532 nm) as the pump source,
and 250 nm diameter TiO2 nanoparticles as scatterers to provide optical feedback,
the so-called random laserwas unambigously demonstrated. Since then, the field of
random lasers has grown to become intensively studied, since it comprises a complex
open system with gain and disorder, and can be used as platforms for a diversity of
applications. Figure 8.56 shows a comparison between a regular laser cavity and a
random laser, that has no cavity. The randomness arises in the path of the photons
before amplification, which can occur in a diffusive or optically localized regime,
and the influence of random cavities in the medium.

Random lasers have been demonstrated using as gain media solid state
nanomaterials, liquid suspensions, and semiconductors, that can be pumped
optically or electrically, as well as polymers and biomaterials. The scatterers can be
passive micron or nanosize powders (TiO2, Al2O3), metallic nanomaterials (Au,
Ag) that have plasmonic properties, semiconductor nanoparticles (ZnO), 2D
materials (ZrTe2), rare earth ions (Er, Nd), or quantum dots. Random lasers are
essentially multidirectional, multimode, low coherence lasers. Directionality can be
achieved by managing the pump source or employing a random fiber laser.

Fig. 8.56 Comparison between a regular laser and a ‘random laser’. (a) In a regular laser the light
bounces back and forth between two mirrors that form a cavity. After several passes through the
amplifying material in the cavity, the gain amplification can be large enough to produce laser light.
(b) In a random laser the cavity is absent but multiple scattering between particles in the disordered
material keeps the light trapped long enough for the amplification to become efficient, and for laser
light to emerge in random directions. Reproduced with permission from D. Wiersma, Nature 406,
132 (2000)
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Applications of random lasers include the use as speckle free sources for optical
imaging, optical diagnostic of some types of skin cancer, and optical sensors.

Problems

8.1 Show, using Maxwell’s equations (2.1)–(2.4), that in a medium of
conductivity σ and without electric charge (ρ = 0), the electric field varying
only in the x direction is described by the wave equation Eq. (8.1).

8.2 (a) Show that in a sinusoidal plane wave with an electric field of amplitude
E0 propagating in a dielectric material with refractive index n, the Poynting
vector is given by Eq. (8.11). (b) Calculate the light intensity in a laser beam
with diameter 1 mm and average power of 10 W. (c) Calculate the value of
E0 in the laser beam of item b.

8.3 Show that in a sinusoidal plane wave with an electric field given by Eq. (8.8),
the variation of the intensity in space is given by Eq. (8.13).

8.4 (a) Check that the penetration length δ, given by Eq. (8.30), has the unit of
meter, in the International System. (b) Calculate the value of δ for a frequency
ν = 10 THz, in the far-infrared region. (c) Check that the plasma frequency,
given by Eq. (8.32), has the unit of rad/s. (d) Calculate the plasma frequency
for copper in Hz and in eV.

8.5 The complex refractive index of germanium for a light beamwith wavelength
400 nm is given by N = 4.14 + i 2.221. Calculate:

(a) The phase velocity of light;
(b) The absorption coefficient;
(c) The reflectivity.

8.6 Calculate the total transmission of a germanium plate with parallel faces and
thickness 50 nm for a light beam of wavelength 400 nm.

8.7 The linewidth of an absorption line is defined as the difference between the
two frequencies forwhich absorption is half themaximumvalue at resonance.
Show that for the Lorentzian function (8.40) the linewidth is equal to the
damping rate �.

8.8 In comparing Eqs. (8.57) and (8.38), one can see that (N1 − N2) p2
12 /�ε0

must have has the same dimension as ω2
p /ω0. Show that this is true.

8.9 From the dielectric constant for a two-level system with a Lorentzian line,
given by Eq. (8.57), calculate the absorption coefficient α, in cm−1, at the
peak of the line, for the following parameter values: ν0 = 3 × 1014 Hz;
N2 = 0; N1 = 1018 cm−3; � = 3 × 103 s−1; p = ea0, where e is the modulus
of the electron charge, and a0 the Bohr radius.

8.10 Ahydrogen atom is in an electromagnetic field linearly polarizedwith photons
of energy equal to the separation between the levels n = 1 and n = 2. Using
the eigenfunctions in Table 3.1, show that there is only one electric dipole
transition from state n, l, m = 1, 0, 0 to state 1, 1, 0.

8.11 Consider an infrared photo-resistor with dimensions 30× 1× 0.1mm3,made
of intrinsic Ge, with recombination time τ r = 10−6 s, subjected to a voltage
of 10 V.
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(a) Calculate the current variation at the terminals, produced by a variation
of 1 μW in the intensity of an infrared beam with wavelength 1.1 μm,
evenly distributed on the surface, knowing that the quantum efficiency
of Ge in this wavelength is 80%.

(b) Calculate the voltage variation in a load resistance RL = RD in the
conditions of item a.

8.12 A solar cell with area 10 cm2 is made of Si with impurities concentrations
Na = 2 × 1016 cm−3 and Nd = 5 × 1019 cm−3, for which τ n = 10 μs,
τ p = 0.5 μs, Dn = 9.3 cm2/s, and Dp = 2.5 cm2/s. For normal radiation
conditions this cell has IL = 500 mA. Calculate the open circuit voltage and
the maximum electric power provided by the solar cell.

8.13 The responsivity of a photodetector is defined as the ratio between the
current generated by the photons and the incident light power. Calculate the
responsivity of an ideal photodetector as a function of the radiation
wavelength and compare its value with any point on the dashed line in
Fig. 8.22.

8.14 Show that the values of the current and voltage in a solar cell in the condition
of maximum power, are given by Eqs. (8.74) and (8.75).

8.15 Thewidth of the gain curve of aHe–Ne laser is 1.5GHz. Calculate the number
of longitudinal modes of an optical cavity of length 0.5 m that can be emitted
by the laser.

8.16 Calculate the angle of the Brewster window of a gas laser made with a glass
of refractive index n = 1.46.

8.17 The core and cladding of a step-index optical fiber have indexes of refraction
of 1.48 and 1.46, respectively. Calculate the critical angle of propagation.
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Chapter 9
Magnetism, Magnetic Materials,
and Devices

It has been known since Antiquity that iron fragments are attracted by the lodestone,
the namegiven to the naturalmagnet, nowknownasmagnetite,with chemical compo-
sition Fe3O4. The word magnetism comes from Magnesia, a city in ancient Turkey
that was rich in iron ore. In contrast to most electronic materials studied in this
book, magnetic materials have had applications in electrical equipment for almost
two centuries. Remarkably, they continue to reveal new properties, phenomena, and
applications. This chapter begins with the quantum mechanical explanation of the
magnetic properties ofmaterials. The conventional applications are briefly presented.
A longer section is devoted to magnetic recording, an application that continues to
evolve with recently developed spintronics technologies. In one section we describe
microwave properties of magnetic ferrites and their device applications, and finally
we present the basic concept of magnonics and perspectives for applications.

9.1 Magnetism and Magnetic Materials

Magnetic phenomena were among the first to arouse the curiosity of mankind about
the interior of materials. The first reports of experiments with the “mysterious
strength” of the lodestone are attributed to the Greeks and date back to 800 BC.
The first practical use of magnetism was in the compass, invented by the Chinese
in Antiquity. Based on the property of a magnetized needle to orient itself in the
direction of the Earth’s magnetic field, the compass was an important instrument for
navigation in the beginning of the early modern period.

Magnetic phenomena took on a much larger dimension in the nineteenth century,
with the discovery of its correlation with electricity. In 1820 Hans Christian Oersted
discovered that an electric current in a wire produces a magnetic effect, such as
changing the orientation of a nearby compass needle. Later André-Marie Ampère
formulated the law relating the current intensity in the wire and the magnetic field it
creates. The effect by which a wire with current suffers the action of a force produced
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by the field created by a permanent magnet was observed shortly thereafter. In 1831,
Michael Faraday and Joseph Henry discovered the reciprocal effect, magnetic induc-
tion. They found that a time-varyingmagnetic field could induce an electric current in
a circuit. At the end of the nineteenth century these three phenomena were perfectly
understood and already had countless technological applications, among them the
electric motor and the electric generator. The invention of the incandescent lamp,
associated with the development of electric generators, made possible a revolution
in the customs of humanity with the advent of electric lighting. At the same time,
the introduction of electric motors in industry and machine shops revolutionized
industrial, manufacturing, and service activities.

Since the end of the nineteenth century, magnetic materials have played a very
important role in the operation of many devices and equipment of daily use. In tradi-
tional applications, magnetic materials are classified in three categories that will
be studied in this chapter. Permanent magnets, that have the property to create a
constant magnetic field, are used in electric motors, generators, loudspeakers, and a
variety of devices. Soft magnetic materials, that are used to generate a field propor-
tional to the current in the winding of a coil much larger than the field that would
be created only by the current, are used in transformers, relays, electric motors and
generators, as well as in many devices. Materials with magnetic properties interme-
diate between permanent magnets and soft magnets are used to store information in
magnetic recording. Magnetic recording is the best technology in electronics for
the storage of non-volatile and rewritable analog and digital information.

Many of the current applications of magnetic materials have resulted from scien-
tific and technological advances obtained in the past decades in academic and indus-
trial laboratories in many countries. Those advances were only possible thanks to the
understanding of the atomic properties of materials, based on quantum mechanics
developed in the 1920s and 1930s. Many fundamental contributions to magnetism
were made in the following decades. The Physics Nobel Prize was awarded to Louis
Néel in 1970, and to J. H. vanVleck and P.W.Anderson in 1977, for their outstanding
contributions to magnetism, that has been one of the most fertile and active fields in
Condensed Matter Physics. The knowledge accumulated in this field, together with
the progress in materials science and engineering, have enabled the discovery of new
phenomena and the development of new magnetic materials for applications in elec-
tronics. In the last three decades, the development of techniques for the fabrication of
very thin magnetic films and nanometric structures led to the discovery of the giant
magnetoresistance by Albert Fert and Peter Grünberg. This discovery gave origin
to a new field of physics and technology, Spintronics, that studies phenomena in
which the electron transport is controlled by its spin. Fert and Grünberg received the
Physics Nobel Prize in 2007 for their seminal discovery.

The behavior of materials under an external magnetic field is determined by
the origin of their magnetic dipoles, or magnetic moments, and the nature of the
interactions between them. Magnetic dipoles originate from the angular momentum
of electrons in the ions or atoms in the material. This momentum has a quantum
nature, as will be shown in Sect. 9.2.1. However, we shall use in this chapter a
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combination of quantum and semi-classical treatments aiming to obtain the impor-
tant results as straightforwardly as possible.Macroscopically, the quantity that repre-
sents the magnetic state of a material is the magnetization vector �M , defined as the
magnetic dipole moment per unit volume

�M = 1

V

∑

i

�μi , (9.1)

where the sum runs over all points i at which there are dipole moments �μi inside a
volume V. This volume is chosen large enough so as to have a good macroscopic
average, but small relative to the sample size so that the magnetization represents a
local magnetic property.

The magnetic field can be expressed by two quantities, either �B, the magnetic
induction vector, or �H , the magnetic field intensity vector. While �H is related to the
current that creates the field, �B depends as much on the current as on the magnetiza-
tion of the medium. The vector �B determines the magnetic flux � across a surface
S, defined by

� =
∫

S

�B · d�a, (9.2)

where d�a is a vector normal to the surface S at each point. In the semi-classical
macroscopic theory, the magnetization enters in Maxwell’s equations carrying infor-
mation on the magnetic properties of the material, through the relationship between
�B and �H . In the SI this is

�B = μ0( �H + �M), (9.3)

where μ0 = 4π × 10−7 N/A2 is the magnetic permeability of vacuum. In the CGS
the relationship between the fields takes the form,

�B = �H + 4π �M . (9.4)

We see that in the CGS, in a vacuum, �B = �H and μ0 = 1. The material response
to an applied field �H , characterized by the behavior of �M , in many cases can be
represented by the magnetic susceptibility χ. In the simplest case, the magnetization
is induced in the same direction as the applied field so that χ is a scalar defined by,

χ = M

H
. (9.5)

Note that, since M and H have the same dimension, the susceptibility is a
dimensionless quantity. The magnetic permeability μ is defined through the relation
between �B and �H
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�B = μ �H . (9.6)

The relationship between μ and χ, obtained from Eqs. (9.3)–(9.6), is, in the two
systems of units

μ = μ0(1 + χ), (SI) μ = 1 + 4πχ. (CGS) (9.7)

The reason for presenting the relationship between the magnetic quantities in the
two systems of units is the fact that both are widely used mainly in science, but also
in engineering. For this reason, we present in Table 9.1 the units of the magnetic
quantities in the two systems. Note that the unit ofM in the CGS is emu/cm3, where
emu (electromagnetic units) is the unit of magnetic moment, and that emu/cm3 is
formally equivalent to gauss (G). However, since gauss is the unit of B, and in the
CGS the relationship between B and M is given by Eq. (9.4), emu/cm3 is used for
the unit of M and gauss is used for 4πM. In the SI, on the other hand, the unit of
M is A/m, the same as H, while the unit of μ0M and of μ0H is tesla (T). Another
important relationship is that of the energy of a magnetic dipole with moment �μi in
a magnetic field �Bi at point i

Uz = −�μi · �Bi . (9.8)

This equation shows that the energy is minimum when �μi has the same direction
as the field �Bi . Inside a solid, �Bi is the sum of the external field with the fields created
by the ions around point i. This internal field is responsible for the differentiation of
the magnetic properties of materials.

The susceptibility value ranges from 10−5 on very weak magnetic materials up
to 106 in strongly magnetic materials. In some cases the susceptibility is small and
negative. In other cases, the relationship betweenM andH is not linear, so the suscep-
tibility varies with the intensity of the magnetic field. Depending on the microscopic
origin of the magnetization and the internal interactions, materials are commonly
classified in one of the following main categories:

• Diamagnetic

Table 9.1 Units of magnetic quantities in the International (SI) and Gaussian (CGS) Systems

Quantity SI CGS Relation

� Weber (Wb) Maxwell 1 Wb = 108 Maxwells

B Tesla (T) = Wb/m2 Gauss (G) 1 T = 104 G

H A/m Oersted (Oe) 1A/m = 4π × 10−3 Oe

= (1/79.58)Oe

M A/m emu/cm3 1 A/m = 10−3 emu/cm3

μ N/A2 Dimensionless

χ Dimensionless Dimensionless
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• Paramagnetic
• Ferromagnetic
• Ferrimagnetic
• Antiferromagnetic.

Diamagnetism is the weakest type of magnetic response in a system and is charac-
terized by a negative susceptibility of the order of 10−5. The origin of diamagnetism
lies in the variation of the orbital angular momentum of the electron induced by the
application of the external field. The classical explanation of this phenomenon is
based on Lenz’s law, by which a variation in the magnetic field generates an induced
electric current that tends to oppose this variation, that is, by creating a field opposite
to the applied one. This phenomenon occurs in any atom. But since it is very weak,
it is important only in materials with no atomic magnetic dipoles that have much
more pronounced effects. Diamagnetic materials are those that do not have atomic
magnetic dipoles, that is, that have atoms or ions with complete electronic shells.
This is the case of the noble gases, He, Ne, Ar, Kr, Xe. It is also the case of solids
with ionic bonding, whose atoms exchange electrons to keep their last shells filled,
such as NaCl, KBr, LiF, and CaF2. Since diamagnetism is a very weak property of
materials, its detailed properties will not be studied here.

Materials that have permanent atomic magnetic moments are classified in one of
the other categories above, or else have a more complex magnetic structure, as is the
case of the so-called spin glasses. However, to have practical use in the conventional
applications, it is necessary to have large macroscopic magnetization, which occurs
only in ferro- and ferrimagnetic materials. These are the materials used in the three
applications previouslymentioned: permanent magnets; soft magneticmaterials; and
magnetic recording media.

9.2 Magnetic Properties of Materials

The magnetization of a material originates from the magnetic moment associated
with the electron angular momentum. Thus, in order to understand the origin of the
moment magnetic, it is necessary to review some properties of angular momentum.

9.2.1 Origin of the Magnetic Moment of Electrons

Classically, the angular momentum �L of a particle is related to its linear momentum
�p and position vector �r by the expression �L = �r × �p. Since the linear momentum
operator �pop is given by Eq. (3.6), the angular momentum operator is

�Lop = −i� �r × ∇. (9.9)
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From this result, it can be shown (Problem 9.1) that in a hydrogen atom, in which
there is only one electron outside the last filled shell, the electronic orbital is an
eigenstate of the operators L2

op and Lzop. Actually, this is true only if the electron spin
is ignored. The eigenvalue equations for the two operators are

L2
op �nlml = �

2 l(l + 1)�nlml , (9.10)

Lz op �nlml = �ml �nlml , (9.11)

where�nlml is the electronicwave functionwith quantumnumbersn, l,ml . In addition
to the orbital angular momentum, the electron has spin angular momentum, which
is represented by the operator �Sop. If the electron were a classical particle of mass
m, the spin could be interpreted as resulting from a rotation of the electron around
itself, and whose value would depend on the angular speed of rotation. Actually, the
electron is not a classical particle and its spin is an inherently quantum property.
Due to the presence of the spin, the complete electronic wave function has to be
characterized by the orbital part and also a part that represents the spin state. This
part is the eigenfunction of the operators S2op and Szop, having eigenvalues respectively
�
2 s(s + 1) and �ms . For the electron s = 1/2, so that the quantum number ms can

take only the values +1/2 and −1/2, representing the spin up or down, relative to a
quantization axis. This axis is determined, for example, by the direction of an external
magnetic field.

The orbital angular momentum and the spin angular momentum of the electron
give rise to the magnetic dipole moment of the atom. Figure 9.1 illustrates the orbital
magneticmoment in the Bohrmodel of the atom. The classical angularmomentum of
the electron with an orbit of radius r and angular velocity ω is L = Iω =mr2ω. Since
the electron has charge −e, its motion corresponds to a circular loop with current
i= eω/2π. This loop creates amagnetic dipolewithmomentμ= iA= iπr2. Note that
since the electron charge is negative, the magnetic moment has a direction opposite
to the angular momentum. This magnetic moment makes the atom behave like a tiny
magnetic needle, with north (N) and south (S) poles as indicated in Fig. 9.1. From
these expressions we can obtain the relationship between the magnetic moment and
the momentum angular. In the SI we have

Fig. 9.1 Electron orbit in
the Bohr model for the atom
illustrating the orbital
angular momentum and the
orbital magnetic moment
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�μl = −gl
e

2m
�L, (9.12)

where gl = 1 is the orbital g-factor. If the electron spin were a classical quantity, the
relationship between the magnetic moment of the spin �μs and �S would be the same
as (9.12). However, due to the quantum nature of �S, the relation is

�μs = −gs
e

2m
�S, (9.13)

where gs ≈ 2. The difference in the orbital and spin g-factors is one of the
manifestations of the non-classical origin of the spin.

One consequence of the electronmotion around the nucleus is that the electrostatic
field in the reference frame of the nucleus produces a magnetic field in the electron
reference frame resulting from the relativisticLorentz transformation.The interaction
of the electron spin magnetic moment with this magnetic field gives rise to the
spin–orbit interaction. Due to this interaction the electronic wave function is not
an eigenfunction of Lzop and Szop separately. It is an eigenfunction of Jzop, the z-
component of the total angular momentum operator

�Jop = �Lop + �Sop (9.14)

In this case, ml and ms are no longer “good” quantum numbers, but they are still
useful in determining the new quantum number mj = ml + ms.

9.2.2 Magnetic Moment of Atoms and Ions

When the atom or ion has several electrons outside the last filled shell, its magnetic
behavior is determined by the properties of these electrons. This is so because in
a filled shell, electrons occupy orbitals with all possible ml values, positive and
negative, as well as all possible ms values. In this way, the total angular momentum
of the closed shell is zero, and therefore its magnetic moment is also zero. The
manner by which the external electrons occupy the orbitals to form the ground state
is determined by the conditions of minimum energy. These conditions are given by
Hund’s rules, stated as follows:

1. Electrons occupy states so as to maximize the total spin, S = ∑
ms , without

violating Pauli principle.
2. Electrons occupy orbitals that result in the maximum value of L = ∑

ml ,
consistent with rule 1 and the Pauli principle.

3. The quantum number of the total angular momentum is J = |L − S| when the
shell is less than half full, and J = |L + S| when the shell is more than half full.

Most elements of the periodic table form a solid with their atoms gaining or losing
electrons from or to neighboring atoms, so that their last shells are completely filled
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and form diamagnetic ions. This is the case, for example, of sodium and chlorine in
sodiumchloride. The sodiumatomhas 11 electrons,with configuration 1s22s22p63s1,
while chlorine has configuration 1s22s22p63s23p5. The sodium atom loses its 3s
electron, which is the only unpaired one, to form the Na+ ion. This electron goes
to chlorine, completing the 3p layer of the Cl− ion in NaCl. However, this does not
happen with the ions of the transition iron group elements, Ti, V, Cr, Mn, Fe, Co,
and Ni. The atoms of these elements have an incomplete 3d shell, even though they
have electrons in the 4s shell. They are the 4s electrons that are lost in the chemical
bond, leaving the 3d shell unfilled and forming an ion with a non-zero total magnetic
moment. A similar phenomenon occurs with atoms of rare earths elements of the
lanthanide group (Nd, Pm, Sm, Eu, Gd, Tb, Dy, etc.), that lose 6s electrons and stay
with the unfilled 4f shell, and also with some elements of the actinide group. These
are the elements whose atoms or ions have permanent magnetic moments. For this
reason, magnetic materials necessarily contain one or more elements of the transition
iron or rare earth groups.

To calculate the magnetic moment of a certain isolated atom or ion, it is neces-
sary to apply Hund’s rules to determine the configuration of the states and the
corresponding S, L and J values. This is presented schematically, below, for some
important magnetic ions.

Fe2+—configuration: (1s22s22p63s23p6)3d6.
(Argon atom)

The six 3d electrons are distributed as follows:

Rule 1 ms 1/2 1/2 1/2 1/2 1/2 − 1/2 S = 2

Rule 2 ml 2 1 0 − 1 − 2 2 L = 2

Rule 3 J = L + S = 4

The ground state of Fe2+ is represented by 5D4, where the capital letter designates
the value of L (S for L = 0, P for L = 1, D for L = 2, F, G, H, I, etc.). The superscript
is the multiplicity 2S + 1, and the subscript is the value of J.

Mn2+, Fe3+—configuration: (Argon atom) 3d5.
Note that the Mn2+ ion is formed by the loss of two 4s electrons, while the Fe3+

ion is formed by the loss of two 4s electrons and one 3d electron. The distribution of
the five 3d electrons is determined by Hund’s rule as follows:

Rule 1 ms 1/2 1/2 1/2 1/2 1/2 S = 5/2

Rule 2 ml 2 1 0 − 1 − 2 L = 0

Rule 3 J = L + S = 5/2

The ground state of these ions is then 6S5/2. To conclude the examples of the use
of Hund’s rules, consider the case of a rare earth element, Sm3+. Its ion is formed by
the loss of two 6s electrons and one 4f electron, so that five electrons remain in the
4f shell. Thus we have:
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Sm3+—configuration of the last shells: 4f5 5s2 5p6.

Rule 1 ms 1/2 1/2 1/2 1/2 1/2 S = 5/2

Rule 2 ml 3 2 1 0 − 1 L = 5

Rule 3 J = L − S = 5/2

Therefore, the ground state of Sm3+ is 6H5/2.
The total angular momentum has the same properties as in Eqs. (9.10) and (9.11).

Thus, �2 J (J+1) is the eigenvalue of the operator J 2
op andmJ is the eigenvalue of the

operator Jzop, where mJ ranges from −J to +J. The determination of J for each ion
usingHund’s rules allows to calculate themagnetic properties ofmaterials containing
that ion. Using the relations (9.12)–(9.14), it can be shown that the z-component of
the total magnetic moment of a free magnetic ion is, approximately

μz = −gμB mJ , (9.15)

where μB is the so-called Bohr magneton, given by

(CGS) μB = e�

2mc
= 9.27 × 10−21 G cm3

(SI) μB = e�

2m
= 9.27 × 10−24 Am2, (9.16)

where g is the Landé g-factor, given by

g = 1 + J (J + 1) + S(S + 1) − L(L + 1)

2 J (J + 1)
. (9.17)

Note that this equation gives g = 1 for S = 0, and g = 2 for L = 0, as expected,
because gl = 1 and gs = 2. Regarding the units of the Bohr magneton, note that, in
the CGS, G cm3 is the same as erg/G, and in the SI, A m2 is the same as J/T.

Hund’s rules are valid exactly for electrons in isolated atoms or ions, in which the
electric field seen by the electrons has spherical symmetry. However, when an ion
of an element in the 3d group is in a crystal, the electrons of the 3d layer are also
influenced by the crystalline electric field produced by neighboring ions. As a result,
the atomic orbitals of the type in Table 3.1 are not eigenstates of the crystalline
Hamiltonian. It can be shown that the eigenstates are formed approximately by
linear combinations of atomic orbitals with quantum numbers +mL and −mL. Thus,
the effective orbital angular momentum of ions of elements in group 3d in solids
is L ≈ 0. This effect, called suppression of orbital angular momentum, makes the
magnetic moment of materials containing 3d ions to be almost entirely due to the
electron spin. In this case, the moment is calculated with Eq. (9.15) with g ≈ 2.

In the case of rare earth ions, the orbitals responsible for the magnetic moment
correspond to the inner electronic shells. In this case, the crystalline electric field
has a negligible effect on the electrons of these orbitals, because of the shielding by



354 9 Magnetism, Magnetic Materials, and Devices

the outer electrons. This makes the angular momentum of the ion in the solid equal
to that of the free ion, and therefore given by Hund’s rules. Consequently, rare earth
elements have, in general, larger magnetic moment than elements of the 3d group. In
addition, they also have strong interaction between the spin and the crystalline field,
through the spin–orbit coupling. Due to the strong chemical reactivity of rare earth
elements, the technology for using them inmaterials took some time to be developed.
However, in the past decades they have acquired great importance in the industry of
magnetic materials.

9.2.3 Paramagnetism

Paramagnetism is the magnetic property of materials that have permanent atomic
magnetic moments but with negligible interaction with each other. In the absence of
external fields, paramagnetic materials have zero magnetization. The application of
an external field produces a small magnetization in the direction of the field. For this
reason, paramagnetic materials have positive magnetic susceptibility, with values in
the range χ ∼ 10−5–10−3.

The main paramagnetic materials are metals of non-magnetic elements and insu-
latingmaterials that contain noninteracting atoms or ions of elements of the iron tran-
sition group, rare earths, and actinide elements. Metals are paramagnetic, because
an applied magnetic field separates the conduction energy band in two bands, one
with +1/2 spin electrons and one with −1/2 spin electrons. This is due to the fact
that the energies of the magnetic moments of the spins +1/2 and −1/2 in the field
are different. Thus, the lower energy band has a larger number of electrons than the
higher energy band. Since the band with lower energy has a magnetic moment in the
direction of the field, the magnetization induced in the material has the direction of
the field. Thus, the susceptibility χ is positive and the metal is paramagnetic. This
type of magnetism is called Pauli paramagnetism.

Figure 9.2 illustrates some characteristics of paramagnetic materials. The basic
characteristic of these materials is the fact that their atomic magnetic dipoles can

Fig. 9.2 Characteristics of paramagneticmaterials. aBehavior ofmagneticmoments in the absence
of an external magnetic field. b Variation ofM with H (the slope of the curve is the susceptibility).
c Variation of the inverse of susceptibility with temperature



9.2 Magnetic Properties of Materials 355

change their orientation freely, without the influence of neighboring dipoles. At a
finite temperature, in the absence of an external field, the magnetic moments occupy
random directions due to thermal agitation, as illustrated in Fig. 9.2a. With the appli-
cation of an external field, the average orientation of the dipoles produces a resulting
magnetization in the direction of the field. As the field increases, the interaction
energy of the dipoles with the field increases relative to the thermal energy, resulting
in increasing order in the system. At certain temperature ranges, M is proportional
to H, as in Fig. 9.2b. On the other hand, if the field is kept fixed and the temperature
increases, thermal agitation increases, resulting in a smaller susceptibility.
Experiments carried out by Pierre Curie in the nineteenth century showed that the
susceptibility varies with the inverse of the temperature, as shown in Fig. 9.2c. This
temperature dependence of the susceptibility is called Curie law. Pierre Curie was
awarded the Physics Nobel Prize in 1903 not for his work in magnetism, but for his
contributions to phenomena in radioactivity.

The quantum treatment of the basic properties of paramagnetic materials is based
on results presented earlier. For a magnetic field B applied in the z-direction, the
energy levels of a system of magnetic moments obtained from Eqs. (9.8) and (9.15)
are

Em = m gμB B, (9.18)

If the systemhasN independentmagneticmoments, as in a paramagneticmaterial,
the ratio between the number Nm+1 of moments in the level (m + 1) and Nm in the
level m, at a certain temperature T, given by Boltzmann statistics, Eq. (8.54), is

Nm+1

Nm
= e−g μB B/kBT , (9.19)

because gμBB is the energy difference between the two levels. Figure 9.3 illustrates
the variation of the population of each level. Equation (9.19) shows that the levelswith
larger negative values ofm have lower energy, and hence they have larger population.
As a result, the number of magnetic moments in the direction of B is larger, so that

Fig. 9.3 Variation with
energy of the population of
independent magnetic
moments in thermal
equilibrium
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M is nonzero and points in the direction of the field. Using Eqs. (9.1), (9.5) and
(9.19) one can calculate the temperature dependence of the susceptibility χ (T ) and
obtain the Curie law. This derivation was one of the first successes of quantum
theory of materials. Let us calculate the susceptibility for the simple case of S = 1/2
and L = 0, in which there are only two energy levels. In this case J = 1/2, mJ = ±
1/2, and g = 2, so that the magnetization in the direction (z) of the field is

M = (N1 − N2) μB, (9.20)

where N1 is the number of magnetic moments per unit volume in the direction of the
field, and N2 the number in the opposite direction. Substituting Eq. (9.19) in (9.20),
and introducing the dimensionless quantity x ≡ μBB/kBT we obtain

M = N μB
1 − e−x

1 + e−x
= N μB tanh x, (9.21)

where N = N1 + N2 is the total number of magnetic dipoles per unit of volume.
Figure 9.2 shows qualitatively the variation of themagnetization in a paramagnetic

material with field and with temperature, given by Eq. (9.21). For x << 1, that is, for
low field values and/or high temperatures, Eq. (9.21) shows that M varies linearly
with x,

M ≈ N μB x = N μ2
B

kB T
B,

that gives for the susceptibility

χ = M

H
= N μ2

B μ0

kB T
, (9.22)

which is Curie’s law. On the other hand, for x >> 1, corresponding to high field values
and/or low temperatures, M → NμB. In this situation, all dipoles are aligned along
the field and therefore the magnetization is saturated. In quantum theory, this state
consists of all moments at the lowest energy level E1, that is, N2 = 0 and N1 = N.
In the general case in which the quantum number J has any value, the calculation of
M is a little more complex but can be done analytically. One can show that the value
of the saturation magnetization at high fields and/or low temperatures is

Ms = N g J μB . (9.23)

On the other hand, at low fields and/or high temperatures, the susceptibility is

χ = M

H
≈ μ0

C

T
, (9.24)
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where

C = N J (J + 1) g2μ2
B

3 kB
(9.25)

is called Curie constant. Note that in the Gaussian system μ0 = 1 and C has the
dimension of temperature, sinceχ is dimensionless. Evidently, the expressions (9.24)
and (9.25) give the same result asEq. (9.22) for the case J =1/2,g=2.WithEq. (9.23)
it is possible to calculate the value of the saturation magnetization in paramagnetic
materials.

Example 9.1 Consider a material with a simple cubic lattice, with lattice
parameter a = 2.5 Å, having J = 1 and magnetic moment 2μB per unit
cell. Calculate: (a) The saturation magnetization; (b) The susceptibility at T =
300 K.

(a) To calculateMs with Eq. (9.23), note that N = 1/a3. Using μB = 9.27 ×
10−21 Gcm3, we have in the Gaussian system

Ms = 2 × 9.27 × 10−21

2.53 × 10−24
= 1.19 × 103G.

This is the typical order of magnitude of the saturation magnetization
observed both in paramagnetic and ferromagnetic materials.

(b) The susceptibility obtained from Eqs. (9.24) and (9.25) with these same
data, at T = 300 K, in the Gaussian system (μ0 = 1) is

χ = 2 × 22 × 9.272 × 10−42

2.53 × 10−24 × 300 × 3 × 1.38 × 10−16
= 3.54 × 10−4

The susceptibility calculated in Example 9.1, of the order of 10−4, observed in
paramagnetic materials, is several orders of magnitude smaller than in ferromagnetic
materials. The fact that both classes ofmaterials have similarmagnetizationswhen all
moments are aligned, which occurs at T = 0, indicates that the origin of the magnetic
moments is the same in both classes. However, the fact that at room temperaturemany
ferromagnetic materials have magnetization of the same order as at T = 0 indicates
that there is an interaction between their moments that tends to keep them aligned.
Materials with a strong interaction between the magnetic moments are presented in
the next section.
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9.3 Magnetic Materials

Various metals with elements of the iron transition group, such as iron, nickel, and
cobalt, pure or in alloys with other elements, exhibit a large magnetization at room
temperature when subjected to a small external magnetic field. These materials are
said to be ferromagnetic. They have the property of being attracted by magnetite,
as known since ancient times. However, only at the end of the nineteenth century
quantitative measurements of the magnetic properties of these materials were carried
out. In the middle of the twentieth century, it was discovered that various materials
that were supposed to be ferromagnetic are, actually, ferrimagnetic. These two
categories ofmaterials have similarmagnetic properties and find various applications
in electronics.

9.3.1 Spontaneous Magnetization and Curie Temperature

At the end of the nineteenth century, Pierre Curie found that the magnetization
of ferromagnetic materials under a small applied field decreases with increasing
temperature and vanishes above a certain critical temperature Tc, called Curie
temperature. Actually, it is now well established that locally, in small regions called
magnetic domains, ferromagnetic materials have finite magnetization even in the
absence of an external field. This is called spontaneous magnetization and it results
from a strong interaction between neighboring atomic magnetic moments that acts
to keep them aligned. The qualitative form of the temperature dependence of the
spontaneous magnetization M is shown in Fig. 9.4. At T = 0, M has a value equal
to the saturation magnetization Ms, because all moments are aligned in the same
direction. As the temperature increases, M gradually decreases due to the thermal
agitation of the moments. At T > Tc, the thermal energy is larger than the ordering

Fig. 9.4 Temperature
dependence of the
spontaneous magnetization
in ferromagnetic materials
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Fig. 9.5 Classical view of the magnetic moments in a ferromagnetic material in three temperature
ranges

Table 9.2 Data for some
ferromagnetic materials in the
CGS system. To obtain the
value of μ0M in the SI (tesla)
just divide 4πM by 10

Material Tc
(K)

4πM (0)
(kG)

4πM (300 K)
(kG)

Fe 1043 22.016 21.450

Co 1394 18.171 17.593

Ni 631 6.409 6.095

Gd 293 24.881 0

CrBr3 37 3.393 0

EuO 77 24.002 0

EuS 16.5 14.878 0

energy, so that the material has a paramagnetic behavior, with M = 0. Figure 9.5
illustrates the classical view of the magnetic moments in these three temperature
ranges.

Table 9.2 presents the values of the Curie temperature Tc and the spontaneous
magnetization at T = 0 and 300 K in some simple ferromagnets. In the CGS system
the magnetization is multiplied by 4π, because the value that contributes to the field
B is 4πM. Note that various materials have Tc < 300 K, and therefore do not have
spontaneous magnetization at room temperature. Another interesting observation is
that the materials that have larger magnetization, do not necessarily have larger Tc.
The reason for this is that the value of M depends on the atomic magnetic moment,
whereas Tc depends on the interaction between the moments, as we shall see in the
next subsection.

9.3.2 The Molecular Field Model

In the beginning of the twentieth century, when the origin of the atomic magnetic
moment was still not understood, Pierre Weiss proposed a theoretical model for
ferromagnetism, that even today is still useful. In this model, each atomic magnetic
moment is under the action of an effective magnetic field created by its neighbors,
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which tends to make them align in the same direction. This effective field �BE ,
postulated empirically by Weiss, called Weiss molecular field, is proportional to the
local magnetization

�BE = λ �M, (9.26)

where λ is a parameter characteristic of each material. Thus, each dipole tends to
align along �BE and therefore with �M , whose direction is given by the average of all
neighboring dipoles. This model can be used to calculate the local magnetization as
a function of temperature and the applied field H0. Let us carry out this calculation
using the magnetization in Eq. (9.21), valid only for S = 1/2 and g = 2, with the
parameter x determined by the total local field

x = μB B

kB T
= μB(μ0H0 + λ M)

kB T
. (9.27)

Thus, the spontaneous magnetization given by Eqs. (9.21) and (9.27) with H0 =
0 is

M = N μB tanh

(
μBλ M

kB T

)
. (9.28)

This is a transcendental equation, which does not have analytical solution but can
be solved numerically or graphically. Figure 9.6 illustrates the solutions of (9.28) for
the spontaneousmagnetization at four temperature values. The solid curve represents
the functionM (x) given by Eq. (9.21), while the dashed lines represent the function
M = kBTx/μBλ at different temperatures.

For T = T 1 << Tc, the solution of Eq. (9.28) is given by point 1, the intersection
of the curve with the line corresponding to T 1, which has a small slope. At this point
the spontaneous magnetization has a value close to the saturation valueMs. It is easy
to see that as T increases, the slope of the line increases and therefore the value ofM

Fig. 9.6 Graphic solution of
Eq. (9.28) for the
spontaneous magnetization
in a ferromagnetic material
at four temperature values
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decreases, as in point 2 of Fig. 9.6. This behavior is consistent with the experimental
result shown in Fig. 9.4. The Curie temperature Tc is the one for which the line is
tangential to the M(x) curve, since it is the smallest value of T for which M = 0
(point 3 of the figure). Evidently, for T > Tc, the solution remains at point 3 and
therefore M = 0.

We can obtain an expression relating Tc with the material parameters using the
condition that the line is tangential to theM(x) curve at x = 0 in Fig. 9.6. The slope
of the line is kBT /μBλ. For x << 1, tanh x ≈ x, so that the slope of the tangent to the
curve forM (x) at x = 0 calculated with Eq. (9.21) is NμB. Equating the two slopes
we obtain

Tc = Nμ2
B

kB
λ.

Note that the expression thatmultiplies λ in this result is exactly the Curie constant
C, valid for J = 1/2, g = 2, in Eq. (9.25). For the general case of any J, it can be
shown that

Tc = C λ. (9.29)

This result can be obtained in another interesting way. In the ferromagnetic phase,
T < Tc, it makes no sense to define a local susceptibility, sinceM = 0 with H0 = 0.
However, in the paramagnetic phase, T > Tc, the local susceptibility is given by
Eq. (9.24), χ = μ0C/T. Since the local field is the sum of the external field and the
molecular field, we can write

M = χl

μ0
(μ0H0 + BE ) = C

T
(μ0H0 + λM).

With this expression we obtain the susceptibility of a ferromagnetic material in
the paramagnetic phase,

χ = M

H0
= μ0C

T − Tc
, (9.30)

where Tc = λ C, as in Eq. (9.29). This result, known as the Curie–Weiss law, shows
that χ diverges when T → Tc. This is consistent with the fact that at T ≤ Tc, M is
finite even with H0 = 0, as expected for the ferromagnetic phase.

From the result (9.29) we can estimate the value of the molecular field in ferro-
magnetic materials. For metals of the iron transition group, from Table 9.2 we have
M ∼ 103 G and Tc ∼ 103 K, and with Eq. (9.25) we obtain in the Gaussian system
C ∼ 1 K. Therefore, λ = Tc/C ∼ 103, so that the molecular field BE = λM is on the
order of 106 G. This value is very high compared to typical magnetic fields produced
in laboratories, which are at most on the order of 105 G. It is also much larger than
the magnetic field that an atomic magnetic dipole creates on its neighbors, which is
on the order of μB/a3 ∼ 10−20/10−23 = 103 G.
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9.3.3 The Exchange Interaction

The origin of the Weiss molecular field was explained many years after its proposal
by means of quantum mechanics. It is associated with the so-called Heisenberg
exchange interaction energy, that has its origin in the electrostatic interaction but has
a quantum nature, with no classical analogy. This energy results from the difference
between the electrostatic energies of two interacting electrons in two situations, one
with parallel spins and the other with antiparallel spins. We can understand this
interaction with a simple model.

Consider two electrons of neighboring ions, whose spins are �S1 and �S2. The
Pauli exclusion principle requires the total wave function of the two electrons to be
antisymmetric. The total wave function is the product of the spatial wave function and
the one that describes the spin state. When the spatial wave function is symmetric,
the spins must be antiparallel, so that the total wave function is antisymmetric. On
the other hand, when the spatial function is antisymmetric, the spins must be parallel.
Since the total electrostatic energy of the set depends on the spatial distribution of the
electric charge, it is different in the two cases illustrated in Fig. 9.7. The difference
between the values of the electrostatic energy in the two situations is called exchange
energy between the two spins. This energy depends essentially on the spin states,
and it can be shown that it has the form

U12 = −2J12 �S1 · �S2, (9.31)

where J12 is the Heisenberg integral, also called exchange constant. Its value
depends on the electronic distributions of the atoms and the distance between them.
Since the electrostatic interaction decreases with increasing distance, J12 is small
for atoms far apart. We see from Eq. (9.31) that when J12 is positive, the lowest
energy state corresponds to the two spins parallel, which gives rise to a ferromagnetic
ordering.

In the case of substances that contain only one element with atomic magnetic
moment, J12 is, in general, positive. However, when the substance contains elements
that mediate the chemical bond between the atoms with magnetic moments, as in
the case of O, F and C, for example, J12 tends to be negative. In this case, the state

Fig. 9.7 Illustration of the origin of the exchange interaction. The directions of the spins depend
of the spatial charge distribution (spatial wave function) of the electrons of the neighboring ions
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of minimum exchange energy has the spins antiparallel. This gives rise to antiferro-
magnetism and ferrimagnetism. For this reason, it is rare to find ferromagnetism in
oxides, fluorides, or chlorides, and most magnetic compounds are ferrimagnetic or
antiferromagnetic. Evidently, when J12 = 0, the material is paramagnetic. It is easy
to relate the exchange constant with the molecular field. Consider two neighboring
atoms with magnetic moments �μ1 and �μ2. Assuming that the magnetic moment of
the ion is due only to the spin, �μ = −gμB �S, Eq. (9.31) can be rewritten in the form

U12 = 2J12
gμB

�μ1 · �S2. (9.32)

Comparing Eq. (9.32) with (9.8), we see that it is possible to represent the action
of the spin 2 on spin 1 in the form of an effective magnetic field

�B12 = −2J12
gμB

�S2.

Generally, the exchange constant is the same between nearest magnetic neighbors,
that is represented by J1, and it is negligible for more distant neighbors. If a spin has
z1 nearest neighbors, the modulus of the average effective field acting on it is then

BE = 2 S z1 J1
gμB

. (9.33)

This is precisely theWeiss molecular field. Comparing Eqs. (9.26) and (9.33) and
using the value of the magnetization at T = 0,Ms = gμBSN, where N is the number
of spins per unit volume, we see that the parameter introduced in Eq. (9.26) is

λ = 2 z1 J1
N (gμB)2

. (9.34)

Using Eqs. (9.25) and (9.29), with J = S, we obtain the relationship between the
Curie temperature and the exchange constant,

Tc = 2 S(S + 1) z1 J1
3kB

. (9.35)

This result shows that Tc increases with increasing exchange interaction, because
a higher temperature is needed to destroy the magnetic order. This explains the wide
variation in the values of Tc of the materials in Table 9.2.

To conclude this section,we shall address the important question of themagnetism
in metallic materials. So far, all magnetic properties were treated as if the magnetic
moments were associated with localized ions, fixed in the crystal structure. This is
valid for insulators, but not for metals. In metals it is necessary to consider the fact
that electrons occupy states in energy bands, and not discrete levels as in localized
ions. In the case of metals of elements from the iron transition group, the important
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Fig. 9.8 Illustration of the upper energy bands in metals of the iron transition group. a E(k) curves
for T > Tc. b Occupation of states at T < Tc

bands are those associatedwith levels 3d and 4 s. The 4 s band is the one of almost free
electrons, responsible for most of the conductivity. The 3d band is that of magnetism,
for the same reasons discussed in Sect. 9.2.1. In fact, theE (k) curves corresponding to
the 3d and 4s bands overlap, as shown in Fig. 9.8a. As a result, there is a mixture of 3d
and 4s states and the curves for the density of states have the shape shown in Fig. 9.8b
for the up and down spins. Due to the exchange interaction between electronic spins,
at temperatures below Tc the energy of an electron in state k with up spin is smaller
than the energy of an electron in the same state k but with down spin. As a result, the
density of states splits in two, one for up spin with lower energy than the other for
down spin, as indicated in Fig. 9.8b. Since the states are occupied up to the Fermi
level, the band with lower energy has more occupied states than the other. As a result,
some metals of the 3d group have non-zero total magnetic moment, which gives rise
to spontaneous magnetization and ferromagnetic behavior. This is the case of Fe,
Co and Ni, which have magnetic moments at T = 0 with values 2.22 μB, 1.72 μB

and 0.16 μB per atom, respectively. Despite the fact that the origins of the magnetic
moments in metals and insulators are different, the magnetic macroscopic properties
can be treated in a very similar manner in both types of materials.

9.3.4 Ferrimagnetic Materials and Ferrites

When the exchange interaction between two neighboring ions is negative, their
spins tend to align in opposite directions. This gives rise to more complex magnetic
orderings than ferromagnetic. Figure 9.9 illustrates two types of simple ordering that
occur with J12 < 0, antiferromagnetism and ferrimagnetism. In antiferromagnetism
the antiparallel moments are equal, so that the net macroscopic magnetization is
zero. For this reason, although antiferromagnetic materials have a strong interaction
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Fig. 9.9 Illustration of
simple antiferromagnetic and
ferrimagnetic orderings

between magnetic moments, and thus are of great scientific interest, until about the
year 2000 they did not have any technological application. Currently they are used in
read-heads of magnetic recording based on the giant magnetoresistance, presented
in Sect. 9.5.4. Ferrimagnetic materials are also characterized by a negative exchange
interaction. However, they have different neighboring magnetic moments, so that the
resulting net magnetization is different from zero. Actually, macroscopically, many
properties of ferrimagnetic materials are similar to those of ferromagnets.

A class of ferrimagnetic materials very important for electronics consists of
ferrites. They are ferrimagnetic oxideswith crystalline structure similar to the natural
spinelMgAl2O4. Theirmagnetic properties result from the presence ofmagnetic ions,
such as Fe, Ni, Co, Mn, or rare-earths elements, in place of Mg or Al. They have a
crystal structure in which the spins tend to align opposite to each other, but several
of their magnetic properties are similar to those of ferromagnets. Two important
properties of some ferrites give them considerable technological importance. These
are the speed of the magnetization response and the high resistivity. The last one
makes them suitable to be used in high frequency applications, including in the
microwave range, because they do not exhibit eddy currents, which are responsible
for heating and energy loss in ferromagnetic metals.

Figure 9.10 shows the crystal structure of the classical spinel MgAl2O4, which is
a well-knownmineral found in nature. The spinel crystal structure is preserved when

Fig. 9.10 Crystal structure
of the natural spinel
MgAl2O4. The Mg2+ ions
occupy tetrahedron positions
and the neighboring oxygens
form a tetrahedron. The Al3+

ions occupy octahedral
positions (only two octants
of the unit cell are shown
with all ions, to facilitate the
view)
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Fig. 9.11 Ordering of the spins in the unit cell of magnetite, Fe2+O.Fe3+2 O3. The spins of the Fe3+

ions at positions A and B cancel each other out

Al3+ is replaced by Fe3+ to produce Mg2+O.Fe3+2 O3, which is called magnesium
ferrite. Further, if Mg2+ is replaced by a divalent metal M, one obtains the ferrospinel
MO.Fe2O3, also generally called ferrite. Nearly any divalent metal such as Ni, Co,
Mn, Zn, Cu, Ba, or Cd may be used to produce a ferrite. If the divalent metal is Fe2+,
we then have iron ferrite, or magnetite, which is the magnet found in nature, Fe3O4

(or FeO.Fe2O3).
The metal ions in the spinel structure occupy two different symmetrical positions.

Position A has tetrahedron symmetry, that is, the oxygen that surrounds the metal
ion forms a tetrahedron. Position B is that of octahedral symmetry. In the crystal unit
cell there are 8 positions A and 16 positions B. In ferrites, the interaction between the
spins of the magnetic ions in position A and a spin in B is negative, so that they order
in an antiparallel or ferrimagnetic arrangement. Figure 9.11 shows how the Fe3+

ions (S = 5/2) and the Fe2+ ions (S = 2) are distributed in magnetite, Fe2+O.Fe3+2 O3.
Notice that the spins of the eight Fe3+ ions in position A cancel the other eight of Fe3+

in position B. As a result, the resulting magnetic moment is due exclusively to the
Fe2+ ions, which have spin S = 2. The magnetic moment measured experimentally
at T ≈ 0 K is 8 × 4.07 μB per unit cell, which is a value close to the one obtained
in Fig. 9.11, namely 8 × gμBS = 8 × 4 μB. The difference is due to the small
contribution of the orbital magnetic moment.

It is possible to obtain a wide variety of ferrites with different magnetizations,
suitable for each application, by the appropriate replacement of the metal ions. Pure
magnesium ferrite Mg2+Fe3+2 O3, for example, has almost zero magnetization, since
the Mg2+ ion is not magnetic and the spins of the Fe3+ ions at positions A and B
cancel out.We show below the chemical formulas of some ferrites in which the metal
ions are fractionally substituted, indicating their magnetic moments per unit cell.

Nickel Ferrite (Fe3+1.0)
A(Ni2+1.0Fe

3+
1.0)

BO4

Magnetic Moment = 8 × 2μB × (↓ 5/2 ↑ 1 ↑ 5/2) = 16μB

Nickel Ferrite with Aluminum (Fe3+1.0)
A(Ni2+1.0Al0.4Fe

3+
0.6)

BO4

Magnetic Moment = 8 × 2μB × (↓ 5/2 ↑ 1 ↑ 0.6 × 5/2) = 0
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Note that with the replacement of a small fraction of iron by aluminum, the
magnetization is canceled out. With the substitution of a smaller fraction we can
obtain a magnetization with any value between 0 and 16 μB per unit cell, producing
a variety of ferrites for different applications.

Ferrites are ceramics, that have great hardness and high melting point. They are
generally used in polycrystalline form. The preparation of ferrites starts with the
mixture of fine particles of the various metal oxides which enter in their composition,
in the desired proportion in the final form of the material. This mixture is heated to
temperatures around 1000 °C with the purpose of homogenizing the oxides. It is
then grounded again and the resulting powder is pressed to obtain the desired shape.
Finally, it is heated to a temperature just below the melting point (1200–1500 °C),
acquiring the dense polycrystalline shape. These steps have durations that vary from
material tomaterial and their details constitute industrial secrets of themanufacturers.
The development of these processes was done during decades of research work in
university and industrial laboratories, with the participation of physicists, chemists,
electrical and materials engineers.

A very important ferrimagnetic material is yttrium iron garnet, well-known
by the acronym YIG, whose chemical formula is Y3Fe5O12. Since the Y3+ ion is
diamagnetic, the magnetic properties of YIG are due to Fe3+ ions, three of which
have spins opposite to the other two in a ferrimagnetic arrangement. The Fe3+ ions
have spin S = 5/2 and orbital angular momentum L = 0, so that themagnetic moment
per unit formula is 5μB. YIG has a complex cubic crystal structure, with the unit cell
containing eight formula units ofY3Fe5O12, so that themagneticmoment per unit cell
is 40 μB. The lattice parameter at 0 K is a = 12.376 Å, resulting in a magnetization
at T = 0 K of M0 = 40 μB/a3 = 194 G. At room temperature M = 140 G and the
Curie temperature is 559 K. YIG is a good insulator and since Fe3+ has L = 0, the
spins have very small coupling with the lattice, so that its magnetic losses are very
low at microwave frequencies. For this reason, YIG plays an important role in the
investigations of dynamic magnetic phenomena at high frequencies and has several
technological applications, such as the YIG filter presented in Sect. 9.6.4. YIG does
not exist in natural minerals. Single-crystal bulk YIG can be grown from the melt
by several methods, while films are grown by liquid-phase epitaxy, pulsed laser and
sputter depositions.

9.3.5 Magnetization Curve: Magnetic Domains

The net magnetization of a piece of a ferro- or ferrimagnetic material in the absence
of an applied magnetic field is generally much smaller than the spontaneous magne-
tization. This is due to the formation of magnetic domains. In this section we shall
discuss the origin of these domains and how they influence the magnetization of a
magnetic material.

In a ferromagnetic material at a temperature T << Tc, the magnetic moments tend
to align in the same direction due to the exchange interaction, even in the absence of
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Fig. 9.12 Illustration of the decrease in magnetostatic energy due to the formation of magnetic
domains

an external field. If this alignment occurs throughout the material, the magnetization
will be uniform, as in Fig. 9.12a. In this case, the magnetic poles generated at the
ends create an external magnetic field, as shown in the figure. The energy associated
with this field, called magnetostatic energy, given by (μ0/2)

∫
H 2dV , is relatively

high, so that this configuration does not remain in equilibrium. If half of the sample
has magnetization in one direction and half in the other, as in Fig. 9.12b, the external
field is smaller and the magnetostatic energy is reduced approximately to one-half
the value in (a). Figure 9.12c shows a situation with even less energy, with the
field lines closing internally in the material, so that the external field is negligible.
The four regions shown in Fig. 9.12c have, internally, saturated magnetization, but
the total average magnetization is negligible. These regions are called magnetic
domains, and they form spontaneously to minimize the energy of the system. The
main contributions to the energy are: magnetostatic energy; Zeeman energy, due to
the interaction of themoments with the externally applied field; exchange energy that
increases with increasing angle between neighboring moments; and the crystalline
anisotropy energy. This last one is the contribution due to the interaction between the
orbital angular momentum and the electric field of the crystal lattice, which tends
to make the moments align themselves along some of the crystalline axes of the
material.

The shape and size of the domains are determined by the minimization of the
total energy. One important feature of the domain arrangement is that the boundary
between two domains is not abrupt, since this would result in a high exchange energy.
The exchange energy of the boundary is lowered with the formation of a layer where
the orientation of the moments varies gradually from one domain to the other. This
layer is the domain wall, also called Bloch wall. Figure 9.13 illustrates a 180° wall,
separating two domains whose magnetizations have opposite directions. Since the
orientation of the moments can vary easily, domain walls are highly mobile. These
walls have typically thickness of around 100 to 1000 nm. The domain widths range
from a few μm to several mm or cm, depending on the characteristics of the material
and the applied external field. Figure 9.14 illustrates the behavior of domains in an
idealized situation. When the applied field is zero, domains are formed, as in (a),
which result in total magnetization null. When a small field is applied along the bar,
there is a displacement of the domain walls to decrease the Zeeman energy. The sizes
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Fig. 9.13 Illustration of a 180° domain wall

of the magnetized domains in the direction of the field increase, while those in the
opposite direction become smaller. As a result, the bar has a net magnetization along
the field, as shown in (b). An increase in the field produces a larger displacement of
the walls and also rotation of the domains, as in (c). Finally, with a much larger field,
all domain walls disappear and the bar is magnetized to saturation, as shown in (d).

The shape of the magnetization curve as a function of the applied field, shown in
Fig. 9.15, is determined by the behavior of the domains. The curve in (a) corresponds
to an initially demagnetized material. For small field values, the initial increase in
the magnetization is due to reversible displacements of the domain walls. If the field
is removed, the domains return to the initial configuration. With a larger field the
magnetization increases due to the displacements of the walls, but these displace-
ments become irreversible due to imperfections in the material. Finally, with higher
field values, there is a domain rotation until the magnetization is saturated over the
whole material. Figure 9.15b shows the behavior of the magnetization M with the
variation of the field H after the material has been saturated. When H decreases, M
does not return by the same curve as with increasing field, because of the effects of
irreversible domains rotations and displacements. Consequently, even with H = 0,
there is a finite value of M = Mr , called remanent magnetization, or remanence,
that results from the imprisonment of certain walls that make domains favorably
oriented with respect to the field to prevail over unfavorably ones. If H increases in

Fig. 9.14 Behavior of magnetic domains in a ferromagnetic bar subject to an external applied field
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Fig. 9.15 Variation of the magnetization of a ferro- or ferrimagnetic material under an applied
external field. a Sample initially demagnetized. b Hysteresis curve

the opposite direction, M gradually decreases and only with a value H = − Hc,
called coercive field, or coercitivity, the magnetization is canceled. The curve in
Fig. 9.15b, called hysteresis cycle, or hysteresis curve, shows the variation ofM in
a complete cycle of variation of H. The shape of the hysteresis cycle is determinant
in the type of application of a magnetic material, as we shall see in the next section.

To conclude this section, let us seewhat happenswhen amaterial is subjected to an
alternating magnetic field Hac, whose amplitude gradually decreases in time. This is
used to demagnetize a ferromagnetic material that has a remanent magnetization, as
illustrated in Fig. 9.16. The application of an AC field with amplitude that decreases
in time, as in (a), results in a trajectory of the magnetization in the M - H plane
shown in (b). If the variation of H is periodic, M describes the hysteresis cycle,
reaching saturation at the positive and negative ends. However, if the amplitude of
H decreases gradually in time, in each consecutive extreme the maximum value of
M is smaller than in the previous cycle. As a result, as the amplitude of H tends to
zero, the material gradually becomes demagnetized.

Fig. 9.16 AC demagnetization process of a ferromagnetic material. a Alternating field Hac with
decreasing amplitude, b trajectory of M in theM - H plane
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Fig. 9.17 Process of DC magnetization with AC polarization. a Trajectory of the magnetization in
the plane M - H, where H = Hac + Hdc; b remanent magnetization curve as a function of Hdc, in
which there is no hysteretic behavior

An important process for themagnetic recording of audio signals is theDCmagne-
tization with AC polarization, illustrated in Fig. 9.17. In this process the material is
subject simultaneously to two H fields in the same direction, one constant Hdc and
the other alternating Hac. The Hac field initially has amplitude larger than Hdc, and
decreases in time as in Fig. 9.16a. In this case, as Hac decreases, the presence of the
Hdc field prevents the value of M to vanish, as in the case of AC demagnetization.
WhenHac becomes zero, the material retains a finite magnetizationMr , whose value
depends onHdc, as shown in Fig. 9.17a. Of course,Mr = 0 ifHdc = 0, andMr = Ms

when the value of Hdc is high. As a result of this process, the Mr− Hdc curve has
the shape shown in (b), in which there is no cycle hysteresis. This process allows
to magnetize a ferromagnetic material with a magnetization proportional to the DC
field, in a certain field range around the origin, to record some information without
the deleterious effect of the hysteretic response of the magnetic medium.

9.4 Materials for Conventional Applications

Magnetic materials play an important role in technology as they find applications in a
large number of products and processes of themost varied sectors. These applications
range from devices with very simple functions, such as the small permanent magnets
used to hold pieces of paper on refrigerator doors and door locks for furniture,
to numerous sophisticated components used in the electro-electronic and computer
industry. One of themost important ismagnetic recording,whosemarket expanded in
the second half of the twentieth century. In the electro-electronic sector, the fabrica-
tion of magnetic materials is supplanted in volume only by semiconductors, because
they are essential elements for many devices and equipment.

From the point of view of the basic magnetic properties, magnetic materials are
classified in three broad classes:
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Fig. 9.18 Hysteresis cycles of magnetic materials: a Hard magnetic materials, or permanent
magnets; b soft magnetic materials; c materials for magnetic recording

• Hard magnetic materials, or permanent magnets;
• Soft magnetic materials, also called high-permeability materials;
• Magnetic recording media.

The hysteresis cycles characteristic of thesematerials are shown in Fig. 9.18. Hard
magnetic materials, used to make permanent magnets, have high values of rema-
nent magnetization Mr and coercitive field Hc, and therefore have a rectangle-like
hysteresis cycle, as in (a). Soft materials are those easily magnetizable by applying
an external field, and easily demagnetizable with the removal of the field. They have
very small coercitivity and very narrow hysteresis cycle, as in (b). Finally, magnetic
recordingmedia must have a hysteresis cycle intermediate between the previous two,
as in (c). They haveMr andHc large enough to store the information contained in the
recording field but quite smaller than in permanent magnets, to allow information to
be erased. In the following sections we present some details on the applications of
these classes of materials.

9.4.1 Permanent Magnets

Permanent magnets constitute the most notable class of magnetic materials. Their
function is to create a static magnetic field in a certain region of space, without the
need of an electric current. Permanentmagnets, also simply calledmagnets, aremade
of hardmagneticmaterials, so that theirmagnetization is not easily altered by external
fields. They are essential components in a variety of electromagnetic devices, such
as generators and motors used to convert mechanical energy into electric energy,
and vice-versa. Motors are employed in industry, household appliances, automo-
biles, airplanes, watches, computers, etc.). They are also essential components in
electro-acoustic devices (loudspeakers, headphones, microphones, magnetic needles
of recording players, etc.), measuring instruments (galvanometers and scales), torque
devices (ultracentrifuges, electric power gauges, etc.), medical equipment, ferrite
devices for microwaves, and various instruments and scientific equipment.

The magnetic field created by a magnet has an intensity and spatial variation
that depend on its physical shape and the magnetic properties of its material. To
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Fig. 9.19 a Flat end of a permanent magnet bar with magnetization perpendicular to the surface.
b Profile view

understand some important issues, let us consider a simple geometry. Figure 9.19
shows a flat end of a magnetized material with magnetizationM perpendicular to the
surface. The field created by themagnetization can be obtained by replacing relations
(9.3) and (9.4) in Maxwell’s Eq. (2.2), so that

∇ · �H = −∇ · 4π �M (CGS), ∇ · �H = −∇ · �M (SI). (9.36)

To integrate these equations, we use Gauss’s theorem, in a manner analogous to
the calculation of the electric field with Eq. (2.1). The analogy with the electric field
suggests the introduction of a fictitious volume density defined by

ρm = −∇ · 4π �M (CGS), ρm = −∇ · �M (SI) (9.37)

where ρm plays the role of a density of magnetic monopoles. Thus, using Eq. (9.37)
we have for the volume integral of Eq. (9.36) inside the Gaussian surface

∫
∇ · �H dV =

∫
ρm dV = qm

With the application of the Gauss theorem we obtain

∮
�H · d�a = qm, (9.38)

where, in the SI,

qm =
∫

∇ · �MdV =
∮

�M · d�a (9.39)

represents the non-compensated magnetic dipoles inside the surface S. In the CGS
the expression of qm is the same as (9.39) with the factor 4π, as in (9.37).
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Note that although magnetic monopoles, or charges, do not exist, qm is
mathematically equivalent to a magnetic charge, since the magnetic dipoles
can be seen as pairs of magnetic charges with opposite signs. Thus,
Eq. (9.38) is analogous to Gauss’s law of electrostatics. In the geom-
etry of Fig. 9.19, the surface used for the application of Eq. (9.38)
is that of a cylinder with bases parallel to the flat surface of the
material. Since the magnetization isM at z < 0 and zero at z > 0, from Eq. (9.39) we
obtain qm =MA, where A is the area of cylinder base. The monopoles are distributed
on the surface with magnetic charge surface density σm = qm/A=M. The interpreta-
tion of this result is that the discontinuity ofM at the surface produces uncompensated
magnetic dipoles, or magnetic monopoles. The surface towards whichM is directed
has positive monopoles, and plays the role of the north pole (N) of the magnet.
Assuming that the other end of the magnet (South pole) is very distant, the H field
created by the charge density σm is analogous to the electric field created by a plane
of electric charges. The application of Eq. (9.39) to the cylinder of Fig. 9.19 then
gives, in the SI,

Hz = σm

2
= M

2
(z > 0), Hz = −M

2
(z < 0). (9.40)

To obtain the result in the CGS, just multiply the right-hand side by 4π. One can
see that the field H inside the magnet has the direction opposite toM, and therefore
it tends to demagnetize the material. This requires the coercive field to be large
enough to avoid demagnetizing the material. With Eqs. (9.4) and (9.40) we obtain
the magnetic induction

Bz = μ0M

2
(z > 0), Bz = μ0M

2
(z < 0). (9.41)

We then see that the field B has the same value at z > 0 and z < 0, which is an
expected result because of the boundary condition that establishes that the normal
component of B is continuous at the surface.

Another simple shape of a permanent magnet for calculating the field is that of
a closed horseshoe, illustrated in Fig. 9.20. In this case, the field in the air gap (the
space between the two poles) is the sum of the fields created by the two planes of
monopoles, the north and south poles of themagnet. Then, in the central region of the

Fig. 9.20 Permanent
magnet with the shape of a
closed horseshoe
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air gap, themagnetic induction vector and the field intensity vector are approximately
uniform, with modulus B = μ0H = μ0M (in the SI). On the other hand, inside the
magnet and near the surfaces, B = μ0M and H = 0.

These two simple examples show that the fields B andH, both inside and outside,
depend on the shape of the magnet. They also show that with no external applied
field, the value of M is not in general the remanent magnetization Mr , because H is
not necessarily zero inside the magnet. Due to the demagnetization effect, inside the
magnet �H has the direction opposite to �M , and therefore the region of the hysteresis
curve relevant for a permanentmagnet is the secondquadrant of theM versusH curve.
Since Maxwell’s equations involve the fields B and H, it is common to represent the
hysteresis cycle with B as a function of H. Figure 9.21 shows the second quadrant
of the B(H) cycle of a permanent magnet. Note that for H = 0, B = μ0Mr . The
operating point of the magnet is determined by the intersection of the hysteresis
curve with the curve that represents the equation that relates B and H, obtained
from Maxwell’s equations and the boundary conditions. In the case of the closed
horseshoe, the operating point of the inner central region of one of the poles is point
1 in Fig. 9.21. In the case of a magnet with the shape of a thin disc, the operating
point is point 2 (Problem 9.8). Generally, one seeks to have the operating point in a
situation intermediate between 1 and 2, because the energy stored in the magnet is
proportional to the volume integral of the BH product. For this reason, a quantity that
indicates the quality of a magnet is the maximum value of the BH product, which
corresponds to a certain point Pm of hysteresis curve. A good permanent magnet has
a high value of (BH)max. This requires high values of Mr and Hc.

Table 9.3 shows the main properties of some materials used for permanent
magnets. The first magnets were made of magnetite, Fe3O4, the natural magnet.
The first artificial hard magnetic materials developed in the beginning of the twen-
tieth century were several types of steel, Fe–C alloys, hardened by special heat
treatments. In the 1930s, Japanese laboratories discovered that the coercive field in
Fe alloys could be increased by mixing Al, Ni, and Co, giving rise to the Alnico
alloys. Table 9.3 shows the composition and the parameters of Alnico 5, a low-cost
alloy that is still widely used today. The discovery of Alnico resulted in a major
improvement compared to steel, that has (BH) product of only 1MG.Oe (106G.Oe).
The magnetic properties of these alloys were improved in the 1940s, when Neél

Fig. 9.21 Second quadrant
of the B versus H curve of a
material used in a permanent
magnet
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Table 9.3 Main properties of hard magnetic materials, used as permanent magnets, at room
temperature

Material Composition 4πMs
(kG)

Hc
(kOe)

(BH)max
(MG.Oe)

Alnico 5 Fe.51Al.08Ni.14Co.24Cu.03 12.5 0.72 5.0

Barium ferrite BaFe12O19 3.95 2.4 3.5

Samarium-Cobalt SmCo5 9.0 8.7 20.0

Neodymium-Iron-Boron Nd2Fe14B 13.0 14.0 40.0

and Kittel introduced the concept of single domain particle. The idea is to make the
material as an aggregate of particles so small that energetically they do not allow
the formation of domain walls. These particles are made with elongated shapes, like
needles, oriented in the same direction during the preparation process.

In the 1950s, the Philips Company Research Laboratories developed the barium
ferrite, whose remanent magnetization is smaller than in Alnico 5, but the coercive
field is much larger. Due to the fact that it has highHc, barium ferrite is used to make
magnets with any shape, that are used for many simple household applications. Rare
earth magnets started to be developed in the 1970s. Initially Co-Sm, and then Fe-
Nd-B, represented a huge advance in quality of the magnets, as can be seen in Table
9.3. The great increase in the (BH)max product of these materials made possible to
manufacture smaller devices with much better performance than with Alnico. The
high power generators of wind turbines and the compact engines of electric vehicles
only became possible with the development of the Nd-Fe-B magnets.

9.4.2 High Permeability Materials

High permeability materials, also called soft magnetic materials, are used to produce
a high magnetic flux by an electric current in a coil, or to produce a large magnetic
induction due to a variable external field. These properties must be achieved with
some requirements of variation in time and space and with minimum energy dissipa-
tion. High permeability materials should then have a narrow hysteresis cycle (very
small Hc) and a large slope of the B-H curve near the origin.

Table 9.4 presents the main properties of some high permeability materials used
today. In low frequency devices (motors, generators, transformers, reactors, among
others) the most common are: pure iron; so-called electric steel, made with steel
blades with small concentrations of carbon or silicon; alloys of iron and nickel, or
iron and cobalt, in the form of the raw material or amorphous alloy prepared by
fast cooling on a cold metal plate. In devices for frequencies above 10 kHz, eddy
current losses do not allow the use of iron, steel or metal alloys. Several ferrites are
used at higher frequencies, such as the hexagonal ferrites (structure of BaFe12O19),
spinels (MFe2O4), and garnets (Y3Fe5O12), that have quite high resistivity. The main
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Table 9.4 Main properties of some high-permeability materials. μmax is the maximum value of
the permeability of the B-H curve. ρ is the resistivity

Material Composition μmax /μ0 4πMs
(kG)

Hc
(Oe)

ρ

(μ
.cm)

Iron Fe 5 × 103 21.5 1.0 10

Carbon steel Fe–C(0.05) 5 × 103 21.5 1.0 10

Silicon steel Fe-Si(3)-C(0.05) 7 × 103 19.7 0.5 60

Permalloy Ni78Fe22 105 10.8 0.05 16

Sendust Fe85Si10Al5 104 10.5 – 80

Mumetal Ni77Fe16Cu5Cr2 105 6.5 0.05 62

Mn-Zn ferrite Mn50Zn50 2 × 103 2.5 0.1 108

applications of these materials are in high frequency transformers and inductors used
in electronic equipment,microwave devices used in telecommunications, in radar and
other applications, as well as in magnetic recording heads.

Figure 9.22 shows a device used to generate a magnetic field proportional to
an electric current, that has a variety of applications. It consists of a core of soft
magnetic material with permeability μ, around which there is a wire coil with N
turns. Let us calculate the magnetic field B in the air gap of the device, created by
the current i in the coil. The relationship between the field and the current originates
from Ampère’s law, obtained fromMaxwell’s Eq. (2.3). Taking into account that the
current i traverses N times the closed path C, shown in the figure, we have, in the SI,

∮
�H · d�l = Ni. (9.42)

Considering μ >> μ0, the magnetic flux produced by the current is entirely
confined in themagnetic circuit. Thismakes the field strength approximately uniform
in the cross section of the magnetic core, with value Hi. Assuming that the air-gap
spacing d is small, the field is approximately uniform in the region between the poles,
having intensity He. Equation (9.42) then gives

Fig. 9.22 Magnetic circuit
used to generate a magnetic
field in the air gap
proportional the current i
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Hi l + He d = N i, (9.43)

where l is the length of curve C inside the core. To obtain the field B in the air
gap, we use the relationships between B and H in the core, B = μHi, and in air,
B= μ0He, and the fact that the normal component of B is continuous at the boundary
of two media. Since B only has a normal component at the surfaces of the poles,
B = μ0Hi = μ0He. Substituting this relation in (9.43) we obtain.

B = N i

l/μ + d/μ0
. (9.44)

Denoting by A the area of the cross section, the magnetic flux in the air gap,
� = BA, can be written in the form

� = Ni

R
, (9.45)

where R is the reluctance of the magnetic circuit, given by

R = l

μA
+ d

μ0A
= Rc + Rg, (9.46)

where Rc and Rg are, respectively, the reluctances of the core and the gap.
Equation (9.45) is analogous to the relationship between current and voltage in an
electric circuit with resistors in series, I = E/R. In the magnetic circuit the flux � is
analogous to the current I, Ni is analogous to the electromotive force E, and is called
magnetomotive force. Of course, R is analogous to resistance, and is given by the
sum of the reluctances of the core and the air gap, as in Eq. (9.46). The recording
and reading heads used in magnetic recording have magnetic circuits like the one in
Fig. 9.22. In these heads it is important to have the highest possible magnetic flux in
the air gap, for a certain magnetomotive force Ni. From Eqs. (9.44)–(9.46) we see
that this is achieved with a minimum core reluctance Rc. It is customary to define
the efficiency η of a recording head by the ratio between the flux in the air gap and
its maximum possible value, that would be obtained with Rc = 0. We see then that
the efficiency is given by

η = Rg

Rg + Rc
. (9.47)

Thus, to make η close to 1, one must use materials with very high values of μ. In
addition, it is customary to make the cross section of the air gap much smaller than
that of the nucleus, in order to make Rc < < Rg.
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Example 9.2 Consider an alnico permanentmagnet and an electromagnet with
an iron core, both in the form of Figs. 9.20 and 9.22, with circular cross section
of 10 cm diameter, total average length of 100 cm and air gap spacing of 2 cm.
Considering that the winding in the electromagnet has 800 turns, calculate the
current that must pass in the winding so that the magnetic field in the air gap,
at a point close to the center of the gap, has the same value as in the alnico
magnet.

The field in the air gap of the magnet is calculated using Eq. (9.40),
considering that the surface of the north pole is equivalent to a disk with posi-
tive magnetic charge density σm, while the south pole has a magnetic charge
−σm. In this case the field in the air gap is approximately uniform and has value
H = σm. The problem is entirely analogous to that of the electric field between
the plates of a capacitor with circular section. Using the value for 4πM of
alnico given in Table 9.3, we see that the field in the air gap of the magnet is

H = 12.5 kOe = 12.5 × 103 × 79.58 A/m = 9.95 × 105A/m.

The H field in the air gap of the electromagnet, calculated with Eq. (9.44),
is.

H = B

μ0
= N i

lμ0/μ + d
.

Using forμ themaximumpermeability of iron, given in Table 9.4, we obtain
the current that produces the same field as in a permanent magnet, in the SI,

i = H(lμ0/μ + d)

N
= 9.95 × 105 × (1/5000 + 0.02)

800
= 25.12A.

Note that the value of lμ0/μ is much smaller than the air-gap space d.
Therefore, it is the space that limits the value of the field.

9.5 Magnetic Recording

The recording of an electric signal, for storage and later reproduction, is one of
the most important functions in information processing. The possibility of using a
magnetic material for recording information was first demonstrated at the end of
the nineteenth century by the Danish engineer Valdemar Poulsen. He invented an
instrument that recorded voice signals in a magnetic steel wire. However, as the
reproduced signal was very weak and distorted, for many years the invention was
nothingmore than a technological curiosity. Only in the 1940s,magnetic tapes gained
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commercial importance in the USA in electronic equipment for audio recording. The
recording of video signals was demonstrated for the first time in 1951, also in the
USA, gaining commercial importance in the 1960s. Thanks to the development of
microelectronics and the evolution of magnetic tapes, audio and video recording and
reproduction becamevery popular in the 1970s. Starting in the 1990s, audio and video
magnetic tape recording and playback systems gradually gaveway to optical compact
disks, described in Sect. 8.8.2, and to semiconductor flash memories, described in
Sect. 7.8.2.

Magnetic recording has always played an important role in digital equipment. The
first commercial electronic computers produced in the 1950s used disks or cylinders
covered with a magnetic layer to store information. They had a storage capacity of
103–104 bits/inch2 and very slow access, with times on the order of milliseconds.
In the 1960s they were no longer used as the main memory, giving place to the
ferrite cores, which allowed faster access. Starting in the 70s, the fast random-access
memories (RAMs) started to be made with MOS semiconductor devices. However,
the tapes and then the magnetic disks established themselves as the best means of
non-volatile and rewritable storage of large amounts of data.

It was in the magnetic recording area that magnetic materials gained importance
and had a huge market expansion at the end of the twentieth century, and there-
fore attracted attention for research and development in company laboratories and
universities. As a result, there has been a continuing increase in storage capacity
and speed of recording and reading magnetic information. Disk storage density,
for example, has been increasing continuously for several decades, now exceeding
1011 bits/inch2. In addition to the use in hard disks, magnetic media became popular
in flexible disks, or floppy disks, for external storage and transport of information.
Later, the floppy disks gave way to the semiconductor flash memories, presented in
Sect. 7.8.2. However, magnetic recording continues to be a success technology, due
to several factors: the variety of media formats (tapes, cards, sheets, hard or floppy
disks, etc.); low cost; non-volatility; high density; and almost unlimited ability to
record, erase and re-record information.

9.5.1 Basic Concepts

Figure 9.23 shows the basic elements of a conventional system for recording and
playback with a magnetic tape or disk. Typical tapes are made of a plastic material,
like polyethylene, with thickness of the order of 25 μm, covered with a fine emul-
sion layer of magnetic particles. The tape moves with constant speed, maintaining
tribological contact with a recording head and a reading head. Each head is made
of a core of high-permeability magnetic material, with a narrow air gap, having a
winding for the electric current signal. It was also common to use a single head, both
for recording and for reading.

In the recording process, the time-varying current, corresponding to the signal
to be recorded, produces a variable magnetic field at the edge of the air gap of
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Fig. 9.23 Basic elements of a traditional recording and reproduction system with magnetic tape

the recording head. As the tape is moving, the field creates a magnetization that
varies along the tape, portraying the input signal. In the process of reproduction,
or playback, or reading, the magnetization of the tape creates a magnetic field that
produces a variable magnetic flux in the reading head. This variable flux induces an
electric current in the winding by the Faraday effect, which reproduces the original
recording signal. In the system shown in Fig. 9.23, the magnetization of the tape
has the longitudinal direction. Assuming that the input current varies sinusoidally in
time, with angular frequency ω, that is

I = I0 sinωt, (9.48)

it can be shown that the magnetization of the tape is, in a first approximation

M = M0 sin kx, (9.49)

where x is the coordinate along the tape (or other medium) and k = ω/v, v being
the tape speed. Based on this relationship, the wavelength of the spatial variation is
defined as

λ = 2π

k
= 2π

v

ω
= v

f
, (9.50)

where f is the signal frequency. The quantitative analysis of the recording and
reproduction processes is done based on the variations given by Eqs. (9.48) and
(9.49), since a signal with any time variation can be decomposed in sinusoidal
functions by Fourier transformation. Actually, the process of magnetizing a tape
with a current in the recording head is reasonably complex, and its analysis requires
numerical methods or approximate models to obtain the spatial variation of M.
However, Eq. (9.49) is a good approximation for the variation of M. This varia-
tion produces an internal field on the tape that tends to demagnetize it, hence the
need for the material to have a reasonably high coercive field. As will be shown in
the next section, the demagnetization field increases with decreasing wavelength.
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Fig. 9.24 Illustration of themagnetic field created by amagnetization that varies sinusoidally along
the tape

The variation of M also creates a field outside the tape. This field, which will
be calculated in the next section, has induction lines as shown in Fig. 9.24. When
the tape passes over the edges of the air gap of the reading head, the external field
generates a magnetic flux that varies sinusoidally in time. This variable flow induces
an electromotive force on the reading-head turns, which is approximately propor-
tional to the current of the recording signal. This process is used in the three basic
types of magnetic recording: analog audio signal; analog video signal; and digital
signals.

In audio recording, the frequency of the signal is in the range 50 Hz-20 kHz.
For a tape speed in the range v = 5–20 cm/s, the recording wavelength is in the
range 2.5 μm–4 mm. Since the air gap thickness of the recording and reading heads
is of the order of a few μm, it is perfectly possible to record and detect varia-
tions of the magnetization in this wavelength range. The audio recording is done by
superimposing the audio signal with anAC polarization signal of frequency 100 kHz,
to obtain a linearity in the M-H relation, by means of the process described in
Sect. 9.3.5. Actually, it was the discovery of this process in the 1920s that enabled
audio recording without the strong distortion that occurs in direct recording.

In video recording, the signal spectrum covers the range 30 Hz–2 MHz, which
causes two problems: the high value of the ratio between themaximum andminimum
of this range, around 7 × 104, makes it difficult to operate the recording and reading
circuits; the wavelength corresponding to themaximum frequency for a tape speed of
75 cm/s, λ = 0.15 μm, is too small to be recorded in the usual magnetic media. Two
techniques are used to bypass these problems. The first consists of using frequency
modulation (FM) of a carrier wave with the video signal. The modulated FM signal
is then used directly in the recording. The carrier frequency used is 3.9 MHz and
the bandwidth has a total width of 5.6 MHz. This greatly reduces the ratio between
the extremes of the band and makes the system little sensitive to fluctuations in the
amplitude of the reading signal. The other important technique is the use of a rotary
recording head. The tape slides at low speed (2 cm/s) over the head in the form of
a rotating cylinder, with high surface speed (5.6 m/s). This results in a high relative
speed between the tape and the head, and consequently in a larger wavelength.

Digital recording is, conceptually, very simple, because the signal is a sequence
of pulses with only two values, corresponding to the digits 0 and 1. These digits
can be stored in a small area of a magnetic medium magnetized in two opposite
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directions. Thus, the recording process is direct, without the need for the sophisti-
cation used in audio or video recording. The recording can be done on tape or disk,
either in the longitudinal (in-plane) or perpendicular directions. Until the 1990s, the
reading process of magnetic digital information was based on the Faraday induc-
tion effect, as will be presented in the next section. However, since the induction
signal is proportional to the magnetic flux, and thus to the area of the storage bit,
this process limits the storage capacity. With the need to increase the data density,
read-heads using magnetoresistance came into use. This is the effect by which the
electric resistance of amagnetic metal changes with the appliedmagnetic field. Since
the effect depends on the field strength, not the flux, it makes possible to decrease
the bit area. Later developments introduced a read-head made of a magnetic multi-
layer that has a magnetoresistive effect much greater than in single films, called giant
magnetoresistance (GMR). Current hard-disk drives employ write and read heads in
close proximity, mounted on an actuator arm that can access any position on the disk.
Magnetic digital recording is widely used in computers, and hard disks and magnetic
tapes constitute the main non-volatile process for storing large amounts of data.

9.5.2 Quantitative Analysis of Magnetic Recording

In this section we shall analyze in detail the process of reproducing a signal recorded
on a magnetic medium. To simplify the problem, we consider a magnetic layer
of thickness δ, infinite in the x and z directions. The coordinate system is shown in
Fig. 9.25, where x is the longitudinal direction of the layermotion. Since themagnetic
layer, in a tape or disk, has a finite width in the z direction, the result obtained for
the infinite layer will be approximately valid for the central region and for small
distances from the layer. The purpose of the analysis is to obtain the fields created
by the magnetized layer, and with them calculate the voltage induced in the reading
head. For this we consider that the layer has longitudinal magnetization, varying
sinusoidally in the x direction as

�M = x̂M(x) = x̂M0 sin kx . (9.51)

Fig. 9.25 Geometry used to
calculate the fields created
by a magnetic tape or disk
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SinceM does not vary in the z direction, the geometry of the problem is reduced
to two dimensions, x and y. To facilitate the solution of the problem, we introduce
the scalar magnetic potential ψ(x, y), defined by the relation

�H = −∇ψ. (9.52)

This is possible because the curl of the gradient of any scalar function is zero, and
in a magnetostatic system (∂ / ∂t = 0) without electric current, Eq. (2.4) becomes
∇ × �H = 0. The equation for ψ, obtained by substituting Eqs. (9.52) and (9.37) into
(9.36), is, in the SI,

∇2ψ = −ρm . (9.53)

This equation must be solved for the three regions of Fig. 9.25, and the final
solution determined by the boundary conditions on the surfaces at y = ±δ/2. In
region 1 the magnetic density ρm is given by Eq. (9.37) applied to (9.51), that is

ρm = −M0 cos kx . (9.54)

Equation (9.53) with ρm = 0 is called Poisson equation. Outside the layer, where
ρm = 0, it reduces the Laplace equation,

∇2ψ = 0. (9.55)

In two dimensions this can be written in the form

∂2ψ

∂x2
+ ∂2ψ

∂y2
= 0. (9.56)

The solutions of this equation for regions 2 and 3 are

ψ2,3(x, y) ∝ (sin kx, cos kx)e±ky . (9.57)

Note that although ρm does not have a y-dependence, the potential within the layer
must vary with y, otherwise it is not possible to satisfy the boundary conditions at
the surfaces. The solution of Eq. (9.53) with ρm given by (9.54) is

ψ1(x, y) = cos kx (A eky + B e−ky + C). (9.58)

The final solution in the three regions is determined by the boundary conditions
for the fields �H and �B at the two surfaces. The continuity of the tangential component
of �H at the interface between two media implies that

ψ1(x, δ/2) = ψ2(x, δ/2), ψ1(x,−δ/2) = ψ3(x,−δ/2). (9.59)
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Since �M has no normal component to the surface, the continuity of the normal
component of �B implies that Hy is continuous, that is,

∂ψ1/∂y|δ/2 = ∂ψ2/∂y|δ/2, ∂ψ1/∂y|−δ/2 = ∂ψ3/∂y|−δ/2 (9.60)

In regions 2 and 3 the solutions (9.57) contain only the term cos kx, because the
term sin kx cannot satisfy the boundary conditions with the solution (9.58) in region
1. In addition, ψ2 cannot contain the term exp(ky) because it diverges at y → +∞,
while ψ3 cannot have the term exp(−ky) that diverges at y → −∞. Hence, the
potentials in regions 2 and 3 are given by

ψ2(x, y) = D cos kxe−ky, (9.61)

ψ3(x, y) = E cos kxeky . (9.62)

Application of the boundary conditions (9.59) and (9.60) to the functions (9.58),
(9.61) and (9.62) at y = ±δ/2, together with Eqs. (9.53) and (9.54) form a system of
five equations that allow to determine the five unknown coefficients. One can show
that the potentials in the three regions are (Problem 9.10)

− δ

2
≤ y ≤ δ

2
ψ1(x, y) = −M0

2k
cos kx

[
2 − e−k(y+δ/2) − ek(y−δ/2)], (9.63)

y ≥ δ

2
ψ2(x, y) = −M0

2k

(
1 − e−kδ

)
cos kxe−k(y−δ/2), (9.64)

y ≤ − δ

2
ψ3(x, y) = −M0

2k

(
1 − e−kδ

)
cos kxek(y+δ/2). (9.65)

The solution (9.63) provides the magnetic field inside the layer. Its components
are

Hx = −∂ψ1

∂x
= −M0

2
sin kx

[
2 − e−k(y+δ/2) − ek(y−δ/2)

]
, (9.66)

Hy = −∂ψ1

∂y
= M0

2
cos kx

[
e−k(y+δ/2) − ek(y−δ/2)]. (9.67)

The field created by themagnetization in the longitudinal direction, Eq. (9.66), has
a direction opposite to �M , and for this reason it is called demagnetization field. For
themagnetic layer to retain themagnetization produced by the recording process, it is
necessary that the material has a coercive field larger than the demagnetization field
at all points. We see in Eq. (9.66) that the field is zero in the limit ω = k = 0
and increases with increasing frequency. The maximum field value in the limit
ω, k → ∞ isM0/2. This result shows that video tapes should be made with materials
of larger coercive fields than audio tapes.
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The field outside the tape is obtained from Eqs. (9.64) and (9.65). It is easy show
that

Hx = −M0

2

(
1 − e−kδ

)
sin kxe−k(±y−δ/2), (9.68)

Hy = ∓M0

2

(
1 − e−kδ

)
cos kx e−k(±y−δ/2), (9.69)

where the upper signs are valid for the region above the tape (y > δ/2) and the lower
one for the region below the tape (y <−δ/2). This result indicates that the longitudinal
and normal components of the field are 90° out of phase. The factor exp (−ky) has
major importance in the reading signal, since it introduces an exponential decay in
the field with the distance to the tape. For example, the field at a distance d = λ from
the tape is reduced to exp (−2π ) ≈ 0.002 of the value at the surface. Because of this
result, it is important to make the tape tensioned to slide in close contact with the
reading head. In the case of video recording, since λ is very small, the noise caused
by amplitude fluctuations due to the exponential factor is avoided by means of the
frequency modulation.

To calculate the signal induced in the reading head, we consider the geometry
shown in Fig. 9.26. Only theHx component contributes to the magnetic flux through
the winding in the core. The fact that the core is magnetic results in an increase of the
field. Using the method of images, it can be shown that in a core with permeability
μ >> μ0, the field B is twice as large as the field in the air. Thus, the magnetic flux
that passes through the turns is, approximately

� = ηL

∞∫

δ/2+d

Bxdy ≈ −ημ0M0L
(
1 − e−kδ

)e−kd

k
sin kx, (9.70)

where η is the efficiency of the reading head,L is thewidth of the tape or the recording
track, and d is the distance from the read-head core to the tape. The voltage induced
in the N turns of the head is obtained with Faraday’s law. With x = vt we have

Fig. 9.26 Illustration of the
flux created by the magnetic
tape on the reading head
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V (t) = −N
d�

dt
= −N v

d�

dx
. (9.71)

Substituting Eq. (9.70) into (9.71) we obtain

V (t) = Nημ0M0Lv
(
1 − e−kδ

)
e−kd cosωt. (9.72)

This result shows that the electric voltage produced in the reading head by the
magnetization of the tape is an alternating signal, lagging by 90° the sine wave
of the recording current. The amplitude of the output voltage depends on the signal
frequency, the tape speed, the remanentmagnetization, and thewidth of the recording
track.

An important requirement for digital recording in computers is the storage
capacity, expressed in bits/cm2. The increase of this capacity requires the decrease
of the area occupied by a bit, and therefore of the track thickness L. However,
Eq. (9.72) shows that the voltage read signal decreases as L decreases, showing that
the reading process based on the induction effect limits the data storage capacity. For
this reason, asmentioned in the previous section, the read-heads of current disk drives
are based on sensors that make use of the giant magnetoresistance effect, which will
be presented in Sect. 9.5.4.

The need to increase data storage capacity in computers has always been a strong
driving force for the development of new processes for magnetic recording and
reading processes. One technology that led to commercial devices that was in the
market for several years in late 1990s and early 2000s is that of the magneto-
optical memory used in removable disks. In this technology the information bits
are recorded on a magnetic disk in motion by a thermomagnetic process. The film
is previously magnetized in the perpendicular direction, upwards, corresponding to
bit 0. In the recording process a semiconductor laser beam modulated by the electric
signal containing the information to be recorded (0 or 1), is focused by a lens on
the magnetic layer, where there is a magnetic field created by a permanent magnet,
directed downwards. This field has a value less than the coercive field of the film
at room temperature, so that it does not change the magnetization of the film. To
record a bit 1 in a small region of the film, the laser beam heats this region and
produces a rapid decrease of Hc, such that the field of the magnet reverses the direc-
tion of magnetization. The reading process is based on the magneto-optical Kerr
effect (MOKE), by which a beam of polarized light incident on a film is reflected
with a polarization that has information about the direction of the magnetization. The
main advantages of magneto-optical memories over the conventional floppy disks
are the shortest access time and larger memory capacity. The main disadvantage is
the higher cost of the recording device and the disk itself, compared to those of floppy
disks and compact optical disks.
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Example 9.3 Calculate the amplitude of the output signal from an induction
read-head on amagnetic tapewith audio frequency 1 kHz, having the following
parameters: N = 20, η = 1, μ0M = 0.5 T, v = 0.1 m/s, L = 1 mm, δ = 10 μm
and d = 0.

The wave number of a 1 kHz signal recorded on a tape with speed
v = 0.1 m/s, given by Eq. (9.50), is

k = 2π f

v
= 2π × 103

0.1
= 6.28 × 104 m−1.

The signal amplitude is calculated with Eq. (9.72),

V = Nημ0M0 Lv
(
1 − e−kδ

) = 20 × 1 × 0.5 × 10−3 × 0.1 ×
(
1 − e−6.28×104×10−5

)

V = 4.66 × 10−4 V = 0.466mV.

This value is easily processed for the final reproduction of the recorded
signal.

9.5.3 Materials for Recording

Two types of magnetic materials are used in magnetic recording equipment: high
permeability materials, which form the core of write and read heads; materials with
intermediate hysteresis cycle, which are used in the layers ofmagnetic storagemedia.

The main materials used in the head cores are metals alloys, permalloy, sendust,
and the oxide ferrites of MnZn and NiZn. The main advantages of permalloy and
sendust, whose parameters are in the Table 9.4, are the large value of the saturation
magnetization and the high permeability. In addition, they have great resistance to
mechanical wear caused by the contact with the moving tape or disk. However, since
they have low electric resistivity, the eddy current effect allows their use only at low
frequencies. This is why they were used in the heads of audio recorders. The MnZn
and NiZn ferrites have smaller magnetization, but have resistivity 105 times larger
than metallic alloys. For this reason, they are used in heads for recording and reading
of video and digital signals.

Regarding the recording media, there are two types of intermediate materials
used to make the magnetic layer: particulate media, which consist of microscopic
particles of oxides or magnetic metals in suspension in a polymeric layer; and thin
films of ferromagnetic metals or metal alloys.
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Particulate media are used to cover audio and video tapes, plastic or paper cards
used in a number of applications, and computer floppy disks. They were also used on
hard-disk drives, however, they were gradually replaced by thin metallic films. The
particulate media are prepared by processes similar to the manufacturing process of
paints used to paint walls, wood, artistic canvas, etc. Any paint is formed by diluted
solid particles in suspension in a liquid medium, consisting of solvents, diluents and
dryers added to a binder. The solid particles are the colored pigments that give the
color to the paint, while the binder can be natural, artificial, or organic oil resin.
After that the paint is spread on the surface to be painted, the drying process takes
place, in which some components of the liquid evaporate and others react chemically
in the binder. After drying, the colored pigments are fixed in the binder layer that
covers the surface. In the case of a magnetic medium, the binder is a polymer and
the particles are made of magnetic oxides or metals, forming what is called magnetic
paint. The particles have elongated shape, with length of the order of 1 μm and
transverse dimension of the order of 0.1 μm. Due to these reduced dimensions, they
can only accommodate a magnetic domain. The magnetic paint is spread over the
surface of the base material, which can be a sheet of polyethylene, in the case of
tapes, or plastic or cardboard, in the case of cards. During the drying process, it is
subjected to a magnetic field of the order of 1 kOe, which serves to align the particles
in the direction that will be used to hold the magnetization. After drying, the particles
are aligned and separated from each other in the magnetic layer.

Various compounds are used to make the magnetic particles. The oldest one and
still used in audio tapes is ferric oxide, with chemical formula γ-Fe2O3. It has satura-
tion magnetization 4πMs = 4.65 kG (orμ0Ms = 0.465 T in the SI) and coercive field
Hc = 300 Oe. However, as the particles are diluted in the magnetic layer, the value
of 4πMs is reduced in the same proportion as the dilution, generally in the range
30–50%. The ferric oxide was also used on floppy disks, and is currently employed
in plastic cards and cardboard tickets. However, its application is restricted to low
frequencies and low recording densities due to the small value of Hc. As the wave-
length, and therefore the size of the recording bit decreases, the demagnetization
field increases, requiring higher values of Hc.

In the 1970s, the Japanese company TDK discovered that the impregnation of a
thin cobalt layer on the surface of ferric oxide increases the value of Hc to about
700–800 Oe. This became the standard process used in high quality audio tapes and
high-capacity floppy disks. Another substance used to make particles of magnetic
inks is chromium dioxide, CrO2, that has 4πMs = 6.16 kG and Hc = 450 Oe, that
are higher than in pure ferric oxide. CrO2 was widely used in tapes for audio, video,
and digital recording, before the discovery of the process of modification of ferric
oxide with cobalt. Since then, several substances were used in themagnetic media for
tapes that provided higher storage capacities. Currently, manufacturers employ very
fine particles of ferrite oxide materials that are chemically stable, to make magnetic
tapes for long-term high density digital data storage. Figure 9.27a shows details of a
magnetic tape developed jointly by Fujii film and IBM, in which the magnetic layer
is made of strontium ferrite (SrFe) or barium ferrite (BaFe), used in a cartridge that
can store the staggering amount of 580 terabytes of data. Figure 9.27b shows images
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Fig. 9.27 a Illustration of the structure of a magnetic tape used for long-term high density digital
data storage (Courtesy of Fujifilm Co.). b Images of a modern data storage tape cartridge consisting
of a single reel (Courtesy of Mark Lantz, IBM Corp.)

of a modern data storage tape cartridge consisting of a single reel. After the cartridge
is inserted in the storage equipments, the tape is fed automatically to a reel built into
the drive mechanism.

In regard to magnetic hard-disks for computers, during the 1990s, thin metallic or
multilayer films of elements of the iron transition group, rare earths, and their alloys,
started to be used in the manufacturing technology. A great advantage of films is the
high value of Ms. For example, pure Fe and Co films have magnetization an order
of magnitude larger than the magnetic oxide particles diluted in magnetic paints.
Magnetic thin films are prepared by high vacuum deposition processes, described in
Sect. 1.4.5. Some of the most used alloys are CoNiPt, CoCrTa and CoCrPt, which
have coercive fields in the range 750–1500 Oe. Films are deposited on an aluminum
disk, having a thickness of tens of nm, and covered with a carbon layer to provide
resistance to corrosion and for lubrication in the contact with the write-read head.
These materials are used for both in-plane and perpendicular magnetic recording.

Magnetic tapes and hard disks are both used for digital data storage in the wide
variety of computing equipment manufactured today, from notebooks and personal
computers to supercomputers. With the exception of capacity, the performance
characteristics of tape and hard drives are very different. The long length of the
tape held in a cartridge, normally hundreds of meters, results in average data-access
times of 50 to 60 s compared with just 5 to 10 ms for hard drives. But the rate at
which data can be written to tape is, surprisingly enough, more than twice the rate
of writing to disk.

9.5.4 Spintronic Technologies for Magnetic Memories

The scientific investigations in magnetic thin films, multilayers, and structures on
the nanometric scale, that started to attract worldwide attention in the 1980s, have
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led to several breakthroughs. The most notable one, the giant magnetoresistance
(GMR), discovered independently by Albert Fert and Peter Grünberg, gave birth to
the field of Spintronics. This is the field of science and technology devoted to the
investigation of phenomena and their applications in which the electron transport is
controlled by an action on its spin. Fert and Grünberg received the Physics Nobel
Prize in 2007 for their seminal discovery that triggered research in this new field
of science and technology. In this section we shall describe two spintronic devices,
the GMR reading head, that made possible a huge increase in the hard-disk storage
capacity, and the magnetic random-access memory (MRAM), that has an advantage
over semiconductor RAMbecause of its non-volatility. First, we present a qualitative
explanation of the GMR, that is the essential for the operation of both devices.

9.5.4.1 The GMR Reading Head

The magnetoresistance (MR) is the phenomenon by which the resistivity ρ of a
metal or semiconductor varies with the application of a magnetic field H. The rate
of change �ρ/�H depends on the material and also on the value of H. The MR is
much higher in ferromagnetic metals than in semiconductors and in non-magnetic
metals. In a thick ferromagnetic wire or film, the magnetoresistance is smaller than
1%, but in a magnetic multilayer it can be larger than 100%. The increase in the
magnetoresistance in a multilayer of thin films is due to the spin-dependence of the
electron transport. As discussed in Sect. 4.5, the electron mean free path in several
simple metals is of the order of 100 nm. Therefore, when traversing a bulk material
or a thick film, with thickness on the order of 1 μm or larger, the electron undergoes
countless collisions and loses the orientation of its spin. For this reason, the electron
spin does not have any role in conventional electronics. However, when crossing a
thin film with thickness up to tens of nm, the spin orientation is preserved, since
the electron does not suffer collisions on the way. Thus, when electrons traverse a
structure with various thin metallic layers, collisions occur mainly at the interfaces.

Figure 9.28 shows a trilayer made of two ferromagnetic (FM) metallic films
separated by a thin nonmagnetic metal (NM) layer. All layers are made with thick-
ness much less than the electron mean-free path, typically in the range of few nm

Fig. 9.28 Schematic
illustration of the mechanism
underlying the giant
magnetoresistance in a
magnetic trilayer with
antiferromagnetic coupling
between the two magnetic
layers. a H = 0. b H > 0
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to about 30 nm. Two different mechanisms are responsible for the GMR of the
trilayer, the coupling between the magnetizations in the two FM layers, and the spin-
dependent interfacial electron scattering. The coupling between the two magnetiza-
tions, discovered in the 1980s, has a quantum origin, mediated by the conduction
electrons in the NM spacer, that can be explained qualitatively as follows. The total
electron wave function, consisting of spatial and spin components, has to be anti-
symmetric. The spatial wave function in the NM layer is a stationary wave with a
number of half-cycles that depend on the spacer layer thickness. For a thickness
such that the spatial wave function is symmetric, the spins are antiparallel, while
for a thickness such that the spatial wave function is anti-symmetric, the spins are
parallel. The spins of the conduction electrons interact with the spins of the FM layers
by means of the exchange interaction and induce a coupling between the two magne-
tizations, with sign and amplitude that vary with the spacer thickness. In Fig. 9.28
the thickness is such that with no applied external field, the two magnetizations
are antiparallel, that is, the coupling is antiferromagnetic, as in (a). If a sufficiently
strong field is applied in the plane, the two magnetizations align with the field, as in
Fig. 9.28b.

The second mechanism underlying the GMR is the spin-dependent electron
scattering at the interfaces of theNMlayerwith eachFMfilm.The interface scattering
is the main source of the electric resistance, since the layers have thickness much
smaller than the electron mean-free path. The origin of the spin-dependent resistance
lies in the fact that the scattering strength for electronswith spin parallel to themagne-
tization is smaller than for electrons with spin antiparallel to themagnetization. Thus,
one can represent the electric current produced by electrons flowing from one FM
layer to the other by a circuit with two parallel branches, one branch for up-spin elec-
trons and the other for down-spin electrons. In each branch there are two resistors,
representing the electron scatterings at the two interfaces. The equivalent circuits for
the two magnetic configurations are shown in the lower panels of Fig. 9.28. If the
two magnetizations are in opposite directions, as in (a), the equivalent circuit has in
both parallel branches a high resistance in series with a small resistance, so that the
total resistance is high. However, with the two magnetizations in the same direction
due to the applied field, one branch has two high resistances in series, while the other
has two low resistances is series, as in (b). In this case, the total resistance is low. The
large change in resistance with the application of the magnetic field is called giant
magnetoresistance, and is characterized by the GMR parameter

ρGMR = RAP − RP

RP
, (9.73)

where RP and RAP are, respectively, the resistances with the two magnetizations
parallel and antiparallel to each other. The value of the GMR parameter depends
on the layer materials, thickness and temperature, and ranges from a few % to over
100%.

An important application of the GMR effect is the spin valve sensor, also called
GMR sensor, a devicewhose electric resistance is controlled by an externalmagnetic
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Fig. 9.29 Schematic illustration of the structure of a spin valve sensor, or GMR sensor

field that acts on themagnetization of a sensor layer. The basic structure of a spin valve
is shown in Fig. 9.29. It consists basically of four thin layers, sequentially deposited
on an appropriate substrate, which can be glass, an insulating crystal (such as MgO),
or a semiconductor (such as Si or GaAs). The top layer is the free layer, made of
a soft magnetic metallic film, with low magnetic anisotropy, such as Ni0.81Fe0.19
(permalloy) or Co0.9Fe0.1, with thickness on the order of 10 nm. This is the sensor
layer, because the direction of its magnetization, determined by an external field,
controls the resistance of the device. The other magnetic layer, called reference
or pinned layer, has a magnetization fixed by means of a mechanism that will be
explained latter. Between the two magnetic layers there is a thin layer of a non-
magnetic metal, usually copper, with thickness of about 5 nm, where most of the
sensor current I passes. The resistance of the copper layer depends on the magne-
tization direction of the sensor layer relative to that of the pinned layer, because of
the spin-dependent interface scattering. When the magnetization of the sensor layer
is parallel to that of the reference layer, the resistance R of the spin valve is low, and
when it is antiparallel the resistance is high. Thus, by passing a constant current, the
value of the sensor voltage indicates the direction of the magnetic field acting on the
sensor.

The mechanism that holds the reference layer magnetization in a given direction
was first observed in the 1950s, but only in late 90s it was investigated in detail in
thin films and was fully understood. It is called exchange bias, and its origin lies
in the exchange interaction between atoms at the interface of a ferromagnetic layer
(FM) with an antiferromagnetic layer (AF). As mentioned earlier, AF materials have
a negative exchange interaction between neighboring spins. When cooled below a
critical temperature, called Neél temperature, TN , they exhibit an ordered magnetic
arrangement, with spins oriented in two or more sublattice directions, such that the
totalmacroscopicmagnetization is zero. Thus, the spin arrangement in anAFmaterial
is insensitive to external fields. When the FM/AF bilayer is cooled in the presence of
an external field, from a temperature above to one below TN , the sublattice spins at
the interface on the AF side become mostly parallel to the magnetization of the FM
layer bymeans of the interfacial exchange interaction. Since theAF spin arrangement
is not affected by external fields, the magnetization of the FM layer stays pinned in
the direction of the field applied during cooling. The AF layer is much thicker than
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Fig. 9.30 Schematic illustration of the inductive recording head and the GMR reading head used
in magnetic hard-disk drives in computers

the other layers, on the order of tens of nm, and it can be made from a variety of
materials with TN above room temperature, such as NiO and IrMn.

An important application of spin valves is in the reading heads of magnetic
recording on computer hard disks. Figure 9.30 illustrates the inductive recording head
and the GMR reading head used to write and read the magnetic information on the
disk. Actually, the figure represents only a schematic illustration to facilitate the view
of the components, since all components are manufactured in the form of multilayer
of thin films, forming an integrated set. In the element shown, the recording is done
with the conventional device, in which the recording current creates a magnetic field
in the air gap of the core that magnetizes the magnetic layer of the disk. The reading
of the recorded information is done by a GMR sensor. A current pulse passes through
the sensor when it is over the magnetized region to be detected. Since the resistance
of the sensor varies with the field created by the magnetization, the resulting voltage
value indicates the information of the recorded bit. The main advantage of the GMR
reading head is that it can detect magnetization in smaller regions than the conven-
tional inductive heads, since it is sensitive to the field created by the magnetization,
while the inductive head is sensitive to magnetic flux, which depends on the area
occupied by the bit. The introduction of the GMR sensor in commercial hard-disk
recording systems started in 1998, and, together with the improvement in the mate-
rials used in the magnetic media, has enabled the continuous increase in memory
capacity. Current technologies employ disks in which the recording bits are magne-
tized perpendicularly to the disk plane and write-read head elements with lateral
dimension of 10–20 nm, reaching storage areal density of the order of 100 Gbits/in2.
The development of magnetic recording technologies in the last two decades has
enabled the increase of storage density of hard disk drives by several orders of
magnitude. This, together with the high-density magnetic tapes described in the
previous section, constitute essential hardware elements in today’s information age
for operation of data centers installed by the cloud computing industry.



9.5 Magnetic Recording 395

9.5.4.2 Magnetic Random-Access Memory

Another important spintronic device for data storage, developed more recently, is
the magnetic random-access memory (MRAM). The MRAM consists of a large
number of magnetic memory cells arranged in a network with the form of a matrix,
similar to the one with semiconductor memories shown in Fig. 7.37. There are
several types of MRAM cells. We shall present here one type that is currently used
in commercial devices, the so-called STT-MRAM. Its operation is based on two
different mechanisms, the tunneling magnetoresistance (TMR) and the spin-transfer
torque (STT).

Figure 9.31 shows the basic structure of a MRAM cell, consisting of two metallic
ferromagnetic (FM) layers separated by a dielectric spacer layer, the tunnel barrier.
The dielectric layer is very thin, typically less than 2 nm, so that electrons can flow
from one FM layer to the other by means of a quantum mechanical tunneling, as
presented in Sect. 3.3.3. For this reason, the element in Fig. 9.31 is also called
magnetic tunnel junction (MTJ). The upper FM layer is the free layer, also called
recording layer, that stores the information by means of the direction of its magne-
tization. The scheme shown in Fig. 9.31 employs in-plane magnetization, but it is
common also to use perpendicular magnetization. The bottom FM layer is the pinned
or reference layer, that has magnetization fixed in a certain direction by means of the
exchange bias due to the contact with the antiferromagnetic (AF) layer. The lateral
dimension of the MTJ in on the order of few tens of nanometers. The layers have
elliptical shape so that the magnetized FM layers have only one domain.

The reading of the stored information is made bymeans of a small reading current
to sense the device resistance. This is determined by the relative orientations of the
magnetizations. If the two magnetizations are parallel, the resistance is low because
the majority band electrons can tunnel into the majority band on the opposite side
of the barrier. If the magnetizations are antiparallel the resistance is high since the
majority band electrons have to tunnel into the minority band of the opposite FM
layer. Thus, for a given reading current, a low voltage represents bit 0 and a higher
voltage represents bit 1. The TMR parameter is defined just like the GMR parameter
as in Eq. (9.73). The first MRAMs were made with GMR cells that have smaller
resistances and require higher currents to have good voltage signals. The TMR cells
have the advantage of quite larger resistances andmuch higher TMR parameters than

Fig. 9.31 Sketch of a MRAM cell with in-plane magnetization. a State of low resistance with
parallel magnetizations, bit 0. b State of high resistance with antiparallel magnetizations, bit 1
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GMRcells. TypicalMRAMcells using FeCoB for the FM layers and crystallineMgO
for the dielectric layer have TMR as high as 500%.

The writing process in the MRAM also employs an electric current through the
memory cell and is based on the mechanism of spin-transfer torque (STT). When
a current pulse is injected into the upper FM layer, as in Fig. 9.31, electrons of
the circuit current flow upward. As they pass through the FM pinned layer they
become spin-polarized, with more electrons with spins in a certain direction than in
the opposite one, so that they carry angular momentum into the free layer. Since the
time-derivative of angular momentum is a torque, the pulsed spin-polarized current
that is injected into the free layer exerts a torque on themagnetization and can reverse
its orientation. Thus, in a cell with the two magnetizations in parallel, representing
bit 0, the bit 1 can be written simply by passing a current pulse through the cell with
intensity above a certain threshold value.

The MRAM device consists of an array of MTJs, or memory cells, in which each
one is connected in series to a MOSFET used as a switch that controls the current
through the MTJ. The array is similar to the one in a semiconductor RAM (SRAM),
illustrated in Fig. 7.37, with the MOS capacitors replaced by MTJs. While in the
SRAM the stored information is represented by the absence (bit 0) or presence (bit
1) of charge in the MOS capacitor, in the MRAM it is represented by the orientation
of the magnetization in the free layer of the MTJ. In both types of RAMs the writing
and reading operations are made by current pulses applied to the word line and bit
line to select a specific cell address. One of the main advantages of the STT-MRAM
over the SRAM is the nonvolatility. Since the MOS capacitors in the SRAM lose
their charge over time, the device must refresh all cells periodically, typically every
50–70 ms, reading each one and re-writing its contents. In contrast, MRAM never
requires a refresh. The nonvolatility also eliminates the need for rebooting when the
computer is turned on, because all information stored in the RAM is saved before it
is turned off.

As presented in Sect. 7.8.2, the semiconductor flash memories that employ
floating-gate avalanche injection MOS, are also nonvolatile, like the MRAM. When
used for reading, flash andMRAM are very similar in power requirements. However,
flash is re-written using a large pulse of voltage (about 10 V) that is stored up over
time in a charge pump, which is both power and time consuming. In addition, the
current pulse physically degrades the flash cells, which means that flash can only
be written to some finite number of times before it must be replaced. In contrast,
MRAM requires only slightly more power to write than read, and no change in the
voltage, eliminating the need for a charge pump. This leads to much faster opera-
tion, lower power consumption, and an indefinitely long lifetime. Currently, the main
disadvantage ofMRAM is the lower storage capacity than flash memories. However,
the use of a new writing process based on the so-called spin–orbit torque promises
to increase the storage capacity of MRAMs.
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9.6 Magnetic Devices for Microwave Circuits

An important area for application of magnetic materials is that of non-reciprocal
devices for microwave circuits. Electromagnetic waves with frequency in the
microwave range, 1–30 GHz, are used in communications between ground stations
and satellites, and in mobile telephony. They are also used in radar and in scien-
tific and industrial equipment, as well as household appliances. Microwave circuits
employ certain devices, such as isolators and circulators, in which the central element
is made of ferrites. To understand the effect of a ferrite on the electromagnetic wave,
it is necessary to study its susceptibility at high frequencies. For this, let us study
initially the behavior of the magnetization in a material subjected to an external
magnetic field.

9.6.1 The Magnetization Precession Motion

When an electromagnetic wave penetrates a magnetic medium, its rf magnetic field
interacts with the microscopic magnetic moments. In case the medium is conductive
and thick, the amplitude of the wave decays rapidly due to the skin effect, so that
the magnetic effect is small. However, if the medium is insulating, the attenuation
is small and the magnetic interaction produces a large effect on the polarization of
the wave. This is why magnetic materials used in microwaves are insulating ferrites.
To calculate the response at high frequencies, we initially consider an infinite ferrite
material, subjected to a staticmagnetic induction field �B. In the equilibrium situation,
the magnetic moment �μ is aligned with �B, because this is the situation in which the
energy, given by Eq. (9.8), is minimum. However, if the moment deviates from the
equilibrium direction, the field exerts a torque on it given by �τ = �μ × �B. From
this relation we can obtain the equation of motion for the magnetization subject to a
magnetic field. First recall Newton’s second law for an angular momentum �J subject
to a torque

�τ = d �J
dt

. (9.74)

In the case of the atomic magnetic dipole, �μ and �J are related by an expression
obtained from Eqs. (9.12)–(9.15),

�μ = −γμ0 �J , (9.75)

where

γ = gμB

�
. (9.76)
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is the gyromagnetic ratio of the magnetic atom, or ion. Substituting Eq. (9.75) into
(9.74) and using the expression for the torque exerted by a field on the magnetic
moment we obtain the equation of motion

d �μ
dt

= −γ �μ × �B.

Considering that themagnetization �M is themagnetic moment per unit of volume,
using Eq. (9.3) and the fact that �M × �M = 0, we obtain the equation of motion for
the magnetization in a magnetic field �H

d �M
dt

= −γμ0 �M × �H . (9.77)

This is called Landau-Lifshitz equation. To understand the free motion of �M
when it is deviated from the direction of equilibrium, we choose a coordinate system
in which the z-axis has the direction of the static field, that is �H = ẑH . We can then
write the magnetization in the form

�M = x̂ mx (t) + ŷ my(t) + ẑ Mz, (9.78)

where we use lowercase letters for the x and y components because they vary in time,
while the z-component is static, and also because mx,my <<Mz. From Eq. (9.77) we
obtain the equations for the transverse components of the magnetization

dmx

dt
= −γμ0 myH,

dmy

dt
= γμ0 mx H. (9.79)

A solution for Eq. (9.79) is

mx (t) = m0 cos(ω0t), my(t) = m0 sin(ω0t). (9.80)

Themotion of themagnetization described by Eq. (9.80) is illustrated in Fig. 9.32.
The magnetization vector �M precesses about the field �H , with its tip in a circular

Fig. 9.32 Precession motion
of the magnetization of a
ferrite about a static
magnetic field H
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motion with amplitude m0 defined by the initial condition. This motion is similar to
that of a gyroscope precessing about the gravitational field. The angular frequency
of precession, which is readily obtained by replacing one of the two equations in
Eq. (9.80) into (9.79), is given by (in the SI).

ω0 = γμ0H = γ B. (9.81)

In the CGS, since μ0 = 1, the precession frequency is given by ω0 = γ H . This
is also the magnetic resonance frequency at which the magnetization response is
maximumwhen driven by a rf field, as will be shown later. The resonance frequency
is proportional to themagnetic field, with a factor that is the gyromagnetic ratio given
by Eq. (9.76). For g = 2 its value is

γ = 2π × 28 GHz/T (SI), γ = 2π × 2.8 GHz/kOe (CGS).

Thus, for typical magnetic fields of magnets or electromagnets, H = 1 kOe,
the precession frequency is 2.8 GHz, so that the natural response of a ferrite has a
frequency situated in the microwave region. This is the reason for the importance of
ferrites for microwave devices.

9.6.2 Dynamic Susceptibility of Ferrites

To calculate the response of a ferrite material to microwave radiation, we consider
an alternating magnetic field, or rf field, with frequency ω, transverse to the static
field. The total field is then

�H = (x̂hx + ŷhy)e
−iω t + ẑH, (9.82)

where hx, hy << H, since H is of the order of hundreds or thousands of Oe, while
the rf field of a wave is of the order of fraction of Oe. Substituting Eqs. (9.78) and
(9.82) into (9.77), we obtain the equations of motion for the transverse components
of the magnetization

dmx

dt
= −γμ0myH + γμ0Mzhye

−iω t , (9.83)

dmy

dt
= γμ0 mx H − γμ0 Mz hx e

−iω t . (9.84)

Since we are only interested in the stationary response, we make

mx(t) = mxe
−iω t , my(t) = mye

−iω t .
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Substituting these expressions in (9.83) and (9.84) and making ω0 = γ μ0H we
obtain

−iωmx = −ω0my + γμ0Mzhy, (9.85)

−iωmy = ω0mx − γμ0Mzhx . (9.86)

From these expressions we can write the relationship between the rf components
of �M and �H in the form,

�m = χ · �h, (9.87)

where the vectors �m and �h are represented by the column matrices

�m =
(
mx

my

)
, �h =

(
hx

hy

)
, (9.88)

and χ is the rf magnetic susceptibility tensor, represented by the square matrix

χ =
[

χxx χxy

χyx χyy

]
, (9.89)

where

χxx (ω) = χyy(ω) = ωMω0

ω2
0 − ω2

, (9.90)

χyx (ω) = −χxy(ω) = i
ωMω

ω2
0 − ω2

, (9.91)

where ωM ≡ γμ0Mz ≈ γμ0M. Note that in the Gaussian system, ωM = γ 4πM,
because μ0 = 1 and 4π is the factor that enters in the relationship between the
permeability and the susceptibility, Eq. (9.7). This result shows that in a ferrite, the
application of a rf field in the x direction, produces rf components of the magnetiza-
tion in both x and y directions. Likewise, a hy field produces mx and my components.
This is due to the fact that the natural motion of the magnetization is the precession
about the z-axis. Thus, the application of a rf field either in the x or in the y direction,
hx or hy, produces the precession motion, and consequently the components mx and
my. For this reason, the relationship between �m and �h is not a scalar, but a tensor.

Equations (9.90) and (9.91) indicate that the amplitude of the magnetization
response increases rapidly as the driving frequency ω approaches ω0, characteristic
of a resonance process. In fact, the susceptibilities diverge at ω = ω0, which is an
unphysical situation, showing that relaxation cannot be neglected. Here we introduce
the magnetic relaxation, or damping, in a phenomenological manner. This can be
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done by introducing an imaginary part in the resonance frequency, that corresponds
to multiplying the amplitudes in Eq. (9.80) by an exponential function that decays
in time. Thus, replacing ω0 in Eqs. (9.90) and (9.91) by ω0 − iη, where η is the
magnetic relaxation rate, the components of the rf susceptibility tensor become,
approximately,

χxx (ω) = χyy(ω) = ωMω0

ω2
0 − ω2 − i2ω0η

, (9.92)

χyx (ω) = −χxy(ω) = i
ωMω

ω2
0 − ω2 − i2ω0η

, (9.93)

where we have assumed that η << ω0, that means small damping.
This result shows that themagnetic response of a ferrite behaves analogously to the

electric susceptibility of an atom subjected to an electromagnetic radiation, studied
in Sects. 8.2.2 and 8.3.2. The difference between the two situations is that, while in
the atom the frequency ω0 is in the optical region of the spectrum, in the magnetic
case ω0 is in the microwave region. The analogy between the two situations also
allows for a quantum interpretation for the magnetic effect in ferrites. The motion
of the magnetization corresponds to quantum transitions between two energy levels
split by the magnetic field. In Eq. (9.18), we see that the energy separation between
two neighboring levels is �E = gμBB. This energy corresponds to photons with
frequency ω0 = �E/� = γ B, which is precisely the precession frequency (9.81).

An important aspect of the ferrite response to a microwave field, is that the preces-
sion frequency ω0 varies linearly with the field H. This allows one to tune the ferrite
response to a desired frequency. Figure 9.33 shows the real and imaginary parts of
the diagonal susceptibility component χ xx as a function of the applied field H, for
a fixed frequency ω/2π = 9.8 GHz. The other parameters used to make the plots
in Fig. 9.33 are: g = 2; ωM/γ = 0.3 T (3 kOe); and η/ω = 0.04. The reason for
making the plot as a function of field, and not frequency, is that usually magnetic
resonance experiments are carried out with the sample inside a microwave cavity to

Fig. 9.33 Real (a) and imaginary (b) parts of the diagonal susceptibility tensor calculated with
ω/2π = 9.8 GHz, g = 2, ωM/γ = 0.3 T (3 kOe) and η/ω = 0.04
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enhance the microwave field. Thus, the frequency is kept fixed and the applied field
is swept.

Note the similarity between this figure and Fig. 8.5 which shows the real and
imaginary parts of the electric permittivity. The imaginary part χ

′ ′
xx has the form of a

Lorentzian function, and it is related to the microwave power absorbed by the ferrite.
As shown in Fig. 9.33, when the field H is scanned and its value coincides with
ω/γ , χ

′ ′
xx is maximum and so is the absorbed microwave power. The phenomenon

by which the absorbed power grows sharply and goes through a maximum at
H = ω/γ is called ferromagnetic resonance (FMR). The resonance field is the
one for which ω = ω0. For a frequency of 9.8 GHz, the resonance field is 3.5 kOe.

The difference between the two field values for which χ
′ ′
xx is half the peak value

is called full linewidth, while one half of which is called half-width at half maximum
(HWHM), or simply linewidth, denoted by �H . From Eq. (9.92) we can readily
obtain a relation between the linewidth and the relaxation rate. For η << ω0 it is

�H = η/γ. (9.94)

Thus, the measurement of the linewidth in a magnetic resonance experiment gives
information about the magnetic damping. The linewidth of the sample with suscepti-
bility shown in Fig. 9.32 is �H = 140 Oe, which is typical of polycrystalline ferrite
materials.

In the ferromagnetic resonance mode, all spins in the medium precess about the
magnetic field with the same phase, i.e., all parallel to each other. Since the spins
interact by means of the exchange interaction, they can also precess with a phase
that varies in space, as in a wave. This constitutes a spin wave, that will be presented
in the next section. Like other waves studied earlier, spin waves are quantized, and
their quanta are called magnons. Thus, the FMR mode corresponds to a spin wave
with zero wave number, or k = 0 magnons.

9.6.3 Electromagnetic Waves in Ferrites

The characteristics of an electromagnetic wave propagating in a ferrite medium
subjected to a static magnetic field H are determined by Maxwell’s Eqs. (2.1)–(2.4),
with the magnetic permeability obtained with the results of the previous section.
Since the susceptibility of a ferrite is a tensor, the permeability, defined by Eqs. (9.6)
and (9.7), is also a tensor. In the SI we have

μ = μ0(1 + χ). (9.95)

As a result, in addition to having a phase change and attenuation along space, an
electromagnetic wave in a ferrite medium can have a change in polarization. The
effects of the ferrite response on the wave depend on the directions of propagation
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and polarization, and also on the difference between the wave frequency and the
FMR frequency.

A special important situation is that of propagation along the static field. In this
case, the rf field �h is perpendicular to the z-axis, and therefore has components hx
and hy. Let us look at the behavior of circularly polarized waves in this region. With
Eqs. (9.88) and (9.89) we obtain

m± = mx ± imy = (χxx ∓ iχxy)(hx ± ihy), (9.96)

where m+ and m− represent the magnetizations of clockwise and counter-clockwise
(right and left) circularly polarized waves, respectively. This result means that,
although the relationship between �m and �h is tensorial, in the case of circularly
polarized waves the relationship is scalar. Denoting by b± and h± the components
of the circularly polarized fields, with Eqs. (9.3) and (9.96) we have

b+ = μ+h+, b− = μ−h−, (9.97)

where

μ± = μ0 = (1 + χxx ∓ iχxy) (9.98)

are the scalar permeabilities for circularly polarized waves. If ω is very different
from ω0, relaxation can be neglected, and from Eqs. (9.90) and (9.91) we obtain

μ+ = μ0

(
1 + ωM

ω0 + ω

)
, (9.99)

μ− = μ0

(
1 + ωM

ω0 − ω

)
. (9.100)

This result means that the relationships for waves in media with scalar perme-
ability, as obtained in Chap. 8, apply to circularly polarized waves in ferrites. For
example, the wave vectors of these waves have moduli

k± = ω ε1/2

c

(
1 + ωM

ω0 ± ω

)1/2

. (9.101)

The fact that circularly polarized waves to the right and to the left have different
propagation vectors, gives rise to the phenomenon of Faraday rotation, illustrated
in Fig. 9.34. Consider a linearly polarized wave propagating in the direction of the
H field, along the z-axis. We choose the x- axis as the direction of the rf field h in
the plane at z = 0. Denoting by h0 the amplitude of the field at z = 0, we have

�h±(0, t) = Re
[
x̂ h0 e

−iωt
] = x̂ h0 cosω t
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Fig. 9.34 Faraday rotation of an electromagnetic wave propagating in the direction of the magnetic
field in a ferrite

It is easy to see that this field can be written as the sum of two circularly polarized
components, with amplitudes h0/2, rotating in opposite directions, �h = �h+ + �h−,
where

�h±(0, t) = Re
[
(x̂ h0/2 ± ŷ i h0/2)e

−iωt
] = x̂

h0
2

cosω t ± ŷ
h0
2

sinω t. (9.102)

Each circularly polarized wave propagates with a different wave vector, so that at
the z = d plane we have

�h±(d, t) = Re
[
(x̂ h0/2 ± ŷ i h0/2)e

ik±d−iωt
]
. (9.103)

The field at z = d is given by the sum of the two fields in Eq. (9.103). Its Cartesian
components can be written in the form

�hx (d, t) = Re
[
h0 cos θ eikmd−iωt

]
, (9.104)

�hy(d, t) = Re
[
h0 sin θ eikmd−iωt

]
, (9.105)

where

km = (k+ + k−)/2, (9.106)
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and

θ = (k− − k+) d/2. (9.107)

Note that Eqs. (9.104) and (9.105) represent a linearly polarized field, in a direc-
tion at an angle θ with the x-axis. This shows that the composition of the two circularly
polarized fields at z = d, with phases different than those at z = 0, results in another
linearly polarized field, but with a polarization direction at an angle θ with the x-axis.

As a result of this process, the original wave propagates through the ferrite main-
taining linear polarization, but in a direction that gradually rotates around the static
field, in the sense from x to y (since k− > k+). This is the phenomenon of Faraday
rotation. The rotation angle of the polarization direction, given by Eq. (9.107), is
proportional to the distance travelled and to the difference between thewave numbers
of polarizations+ and−. It is important to note that the direction of Faraday rotation
is defined by the orientation of the H field, and does not depend on the orientation
of the wave propagation.

Example 9.4 Amicrowave radiationwith frequency 9.4GHzpropagates along
the H field in a ferrite with M = 250 emu/cm3, g = 2, �H = 25 Oe and ε =
4 ε0. Calculate the wave absorption coefficient for H = 2.5 kOe, considering:
(a) Circularly polarized wave in the + direction; (b) Circularly polarized wave
in the −direction.

(a) The wave numbers for the circular polarizations + and − including
magnetic relaxation are given by Eq. (9.101), with the substitution of
ω0 by ω0 − iη,

k± = ω ε1/2

c

(
1 + ωM

ω0 ± ω − iη

)1/2

.

The introduction of the imaginary term in this equation results in an imagi-
nary component of the wave number, which produces attenuation in the wave.
To calculate the imaginary part, it is necessary to work with the complex
number inside the square root, which leads to big expressions in the general
case. To simplify the calculation, let us obtain the numerical values for the
quantities of interest and compare them. Since the important quantities enter
in the equation above in a ratio, let us make explicit the factor 2π that relates
the angular frequency with the frequency. Using the CGS system we have

ω0 = γ H = 2π × 2.8 × 106 × 2.5 × 103 = 2π × 7.0 GHz,

η = γ�H = 2π × 2.8 × 106 × 25 = 2π × 0.07 GHz,
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ωM = γ 4πM = 2π × 2.8 × 106 × 4π × 250 = 2π × 8.8 GHz.

We see then that the imaginary term in the denominator of the expression for
k± is much smaller than the real term. We can then use a binomial expansion
to obtain the real and imaginary parts of the square root. Thus, we have

k± = ω ε1/2

c

{
1 + ωM

(ω0 ± ω)[1 − iη/(ω0 ± ω)]
}1/2

k± ≈ ω ε1/2

c

{
1 + ωM

(ω0 ± ω)

[
1 + iη

(ω0 ± ω)

]}1/2

.

With the binomial expansion of the square-root term we have for the
imaginary part of the wave number

k±′′ ≈ ωε1/2

c

ωMη

2(ω0 ± ω)3/2(ω0 ± ω + ωM)1/2
.

According to Eq. (8.13), the absorption coefficient is twice the imaginary
part of k, therefore

α± = ω ε1/2

c

ωMη

(ω0 ± ω)3/2(ω0 ± ω + ωM)1/2
.

Substituting the values of the quantities, we have

α± = 2π × 6.0 × 109 × 41/2

3 × 1010
8.8 × 0.07

(7.0 ± 6.0)3/2(7.0 ± 6.0 + 8.8)1/2

So, for the + wave we have

α+ = 1.55

(7.0 + 6.0)3/2(7.0 + 6.0 + 8.8)1/2
= 0.007 cm−1.

(b) For the − wave we have,

α− = 1.55

(7.0 − 6.0)3/2(7.0 − 6.0 + 8.8)1/2
= 0.49 cm−1.

We see then that the − circularly polarized wave has a much larger absorp-
tion coefficient than the+wave, because it is closer to the resonance condition,
where the energy loss is much higher.
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Fig. 9.35 Circuit symbols of non-reciprocal devices: a Isolator; b 4-port circulator; c 3-port
circulator

9.6.4 Microwave Ferrite Devices

In this section we shall present, qualitatively, the ferrite devices most used in
microwave circuits, namely, isolators, circulators, and YIG filters. These devices
are used throughout the microwave region, from 1 to 100 GHz. Each unit operates
efficiently only in a narrow range of frequencies, with a bandwidth that depends
on the characteristics of the ferrite and the device geometry. Figure 9.35 shows the
circuit symbols of the isolator and two circulators.

The isolator is a two-port device, which transmits radiation in one direction and
fully absorbs radiation in the opposite direction. It is used in the output of microwave
generators, to prevent the reflections from the external circuit to return to the generator
and interfere in its operation. Figure 9.35a shows the circuit symbol of an isolator.
Since isolators are non-reciprocal devices, their operation depends fundamentally on
materials that have non-reciprocal properties. In the microwave region, the materials
that have these properties are ferrites. Their origin is based on the gyroscopic behavior
of the atomic magnetic moments, whose sense of precession is determined by the
orientation of the applied static field.

One of the first built ferrite isolators for microwave waveguides employed the
effect of Faraday rotation. Its structure, shown in Fig. 9.36, consists of the following
elements: a cylinder of a ferrite material longitudinally magnetized by an external
field, such as to produce Faraday rotation of 45°; two resistive plates with their
planes at an angle of 45° to each other, placed close to the two ports and parallel
to the directions of the larger dimension of the rectangular waveguides; a circular
waveguide inwhich the ferrite cylinder ismounted, with transitions to the rectangular

Fig. 9.36 Schematic
illustration of the structure of
a waveguide Faraday
rotation isolator
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sections of the ports, at an angle of 45° between them. The operation of the device
is described as follows.

An electromagnetic wave entering in port 1 passes through the resistive plate
without attenuation, because it has electric field perpendicular to the plane of the
plate (in the rectangular guide, the electric field has the direction of the smallest
dimension), and therefore does not produce current in the plate. Since the Faraday
rotation of the ferrite rod is 45° clockwise, as the wave reaches port 2 it is transmitted
to the rectangular waveguide. However, a wave in the opposite direction, entering in
port 2, has its polarization rotated 45° in the same sense, so that it is partially absorbed
by the resistive plate near port 1 and also has polarization perpendicular to the one that
is supported by the rectangular waveguide. Thus, the device transmits the microwave
in the direction 1→ 2, but not in the opposite direction. The Faraday rotation isolator
is not used in lowmicrowave frequency ranges because the waveguides have sizeable
dimensions. However, an analogous device, based on the magneto-optical Faraday
effect, is used in the near infrared region in optical fiber communication systems.

The ferrite isolator most used in microwave equipment in ground-based stations
has operation that relies on the ferromagnetic resonance phenomenon. The struc-
ture of the resonance isolator for waveguides, illustrated in Fig. 9.37, consists of a
section of a waveguide, a ferrite plate located in a certain plane of the waveguide,
and a permanent magnet used to magnetize the ferrite and determine the resonance
frequency ω0. In the rectangular waveguide the microwave magnetic field has two
components in the x–y plane, 90° out of phase and with amplitudes that vary along
the x-direction. As a result, there are two planes of the waveguide, P1 and P2 shown
in Fig. 9.37, symmetric about to the middle plane, in which the fields are circularly
polarized, one of them to the right and the other to the left. The distances from P1
and P2 to the side walls are determined by the frequency of the wave and the dimen-
sions of the waveguide (Problem 9.16). The isolator operates in a frequency range
around ω0. For a wave propagating in a certain direction along the guide, the circular
polarization in the plane P1, where the ferrite is located, has the sense opposite to
magnetization precession. In this case there is no ferromagnetic resonance and the
wave is transmitted with small attenuation. However, when wave propagates in the
opposite direction, the senses of the circular polarizations in P1 and P2 are inverted,
producing attenuation due to the resonance absorption in the ferrite. To increase
the absorption, it is common to place a thin resistive plate next to the ferrite. The

Fig. 9.37 Structure of the
resonance isolator for
rectangular waveguides
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Fig. 9.38 Schematic illustration of the Faraday rotation 4-port circulator

resonance isolators have simple construction and can have a ratio between the trans-
missions in the two directions up to 104. They are also made with coaxial cables and
miniaturized microstrips used in devices for portable equipment.

Another important microwave ferrite device is the circulator, also called gyrator.
It is a device with three or more ports, which transmits the radiation that enters in a
certain port to a neighboring one, in a “one-way” sense. Figure 9.35b and c show the
circuit symbols of 3- and 4-port circulators, respectively. An important application of
the 3-port circulator is in systems of transmission and receptionwith a single antenna.
As shown in Fig. 9.35b, the circulator causes the radiation from the transmitter (T)
to be directed to the antenna (A). On the other hand, the radiation received by the
antenna is directed to the receiver (R). Since the direction of the gyrator is one-way,
the signal from the transmitter is not carried to the receiver.

Like with the isolator, the first 4-port circulator was based on the Faraday rotation.
Its components, shown in Fig. 9.38, are: a ferrite cylinder placed in a circular waveg-
uide section, with 45° Faraday rotation; four ports made of sections of rectangular
waveguides, with port 2 at an angle of 45° from port 1, port 3 perpendicular to 1, and
port 4 at 45° of port 3. With this arrangement, radiation entering at any port is rotated
by 45° and leaves from the next port, with the other ports maintained isolated. The
circulator of Fig. 9.38 is no longer used due to the difficulty of its miniaturization.
Figure 9.39 shows a 3-port microstrip line circulator, used inminiaturizedmicrowave
circuits. Its operation is also based on gyroscopic properties of the ferrite disc, but

Fig. 9.39 Illustration of a 3-port microstrip line ferrite circulator
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the configuration of the fields in the disk is complex and will not be analyzed here.
Note that by placing a matched load in one port, the 3-port circulator behaves as an
isolator. With the structure in Fig. 9.39, these non-reciprocal devices can be fabri-
cated in thin-film batch-processed miniature microwave hybrid circuits that are use
in a variety of microwave components and subsystems.

Another magnetic device used in microwave circuits is the YIG filter. As we saw
in Sect. 9.4, YIG is a ferrimagnetic garnet, not a ferrite. However, its classification
in the category of ferrites is justified by the similarity of their magnetic properties.
The ferrites used in isolators and circulators are polycrystalline ceramics, with FMR
linewidths of tens or hundreds of Oersted. The large linewidths are necessary for
devices that operate in wide frequency bands. On the other hand, in filters one uses
single-crystal YIG, in the form of highly polished spheres, that have linewidth of
about 0.1 Oe. Since at ω = ω0 the susceptibilities in Eqs. (9.92) and (9.93) have
amplitude ωM /2η = M /2�H, the small �H makes the YIG resonance very intense.
Notice that in a ferrite with the curves shown in Fig. 9.33, the peak of the imaginary
susceptibility is about 10, while in YIG the peak isM/2�H ≈ 104. These properties
allow the construction of narrow-band transmission filters, electrically tunable, and
other devices.

Figure 9.40 shows the basic structures of YIG filters with one and two stages. The
electromagnetic structure of each stage consists only of two fine wire half-loops,
or half-rings, perpendicular to each other. At the center of the loops there is small
single-crystal YIG sphere, with diameter of the order 0.5 mm, subjected to the static
magnetic fieldH of an electromagnet. The field value is adjusted by the current in the
electromagnet. The microwave current in one of the half- loops creates a rf magnetic
field on the sphere, perpendicular to the static field. If the microwave frequency ω

is away from ω0 = γH, the susceptibility is negligible, so that mx and my are negli-
gible. Since the half-loops are in planes perpendicular to each other, in this situation
the signal transmitted from one to the other is also negligible. When ω ≈ ω0, the
field h produced by one of the loops creates in the YIG sphere a rf magnetization
in the x–y plane, given by Eqs. (9.88)–(9.91). The component of the rf magneti-
zation perpendicular to the other loop induces an output signal, proportional to the
input signal. Thus, the device operates as a narrowband transmission filter. Since
ω0 = γH, the filter tuning is made through the current in the electromagnet. The
response curve of the one-stage filter, consisting of the amplitude of the output

Fig. 9.40 Schematic
diagrams of YIG filters:
a one stage; b two stages
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signal as a function of frequency, has the shape of the resonance curve. Other forms
of the response curve appropriate for specific transmission filters, can be synthesized
in devices using multiple stages.

Figure 9.40b shows the diagram of a two-stage filter. Two YIG spheres are
mounted on the same structure and are subject to the same static field. In this way,
when the static field is varied, the resonance frequencies of the two spheres vary
equally. The synthesis of the filter response curve is possible because the resonance
frequency of each sphere varies finely with the direction of its crystalline axes rela-
tive to the external field. Since the transmission curve of the filter is the product of
the responses of the two stages, it is possible to vary the form of the curve by finely
adjusting the crystal orientation of one sphere relative to another. Figure 9.41 shows
the response curve of a two-stage filter built at the Physics Department of UFPE.
The filter has a bandwidth of 15 MHz and can be tuned in the frequency range of 4
to 6 GHz.

YIG filters find various applications in microwave equipment, in functionalities
that require electronic tuning. They are used in the input stages of simple tunable
receivers and in intermediate stages of superheterodyne receivers. They are also
employed to stabilize the frequency of microwave oscillators, such as the Gunn
diode, or oscillators with GaAs or GaN MESFET transistors, with the advantage of
allowing the electronic tuning of the frequency.

The interaction between a microwave magnetic field and the spin precession in a
YIG sphere enables the coherent transfer of information between the electromagnetic
and spin subsystems. This is particularly interesting if the microwave structure is a
resonant cavity, because in this case one has two strongly coupled oscillators of quite
different natures, constituting a hybrid photon-magnon system. Since the spin-wave
resonance frequency can be easily tuned by the applied magnetic field, this system
has a unique advantage over other hybrid coupled-oscillators systems. In recent
years, the investigation of hybrid dynamic systems involving YIG resonators has
attracted great attention due to their possible applications in quantum computation,
information processing, and sensing. Figure 9.42a shows the image a photon-magnon

Fig. 9.41 Response curve of
a two-stage YIG filter (A.
Belfort de Oliveira, Master’s
Thesis, Department of
Physics, UFPE, 1981)
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Fig. 9.42 Illustration of two hybrid systems employing a YIG-sphere magnon resonator: (a) Image
of a microwave cavity, without the top cover, with a YIG sphere at the position of maximum
rf magnetic field. Reproduced with permission from X. Zhang et al., Phys. Rev. Lett. 113, 156401
(2014). Copyright (2014) by the American Physical Society; (b) YIG sphere and a superconducting
qubit inside a microwave cavity. The qubit and the FMR mode interact through virtual excitations
in the cavity modes. Reproduced from D. Lachance-Quirion et al., Sci. Adv. 3, 1603150 (2017),
with permission of the American Association for the Advancement of Science

system employing a small YIG sphere. The microwave cavity made of copper is
shown without the cover. The YIG sphere is placed in a position of maximum rf
magnetic field of the operating mode, and is subject to an external DC magnetic
field that can be varied by the current in the electromagnet. The cavity is excited
through the coaxial cable connector, that is also used to measure the response of the
photon-magnon system. This simple system has been shown to have great potential
for several types of information processing operating at room temperature.

Figure 9.42b shows another interesting hybrid system that consists of a YIG
sphere in a position of maximum rf magnetic field of a microwave cavity and a
superconducting qubit in a position of maximum rf electric field. As will be shown
in Sect. 10.4.4, the qubit is made of superconducting Josephson junctions that have
quantized magnetic flux, which can be in any superposition of the 1 and 0 quantum
states. In this device, that only operates at very low temperatures, the qubit and
the FMR mode of the YIG sphere interact through virtual photon excitations in the
cavity modes. The two systems in Fig. 9.42 provide a new paradigm for combining
platforms and devices that can perform different tasks such as storing, processing,
and transmitting coherent information.
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9.7 Magnonics: Concepts and Perspectives for Device
Applications

As mentioned in the previous section, the ferromagnetic resonance mode in which
all spins in the medium precess about the magnetic field with the same phase
corresponds to a spin wave with zero wave number. As we did in Sect. 2.2 to intro-
duce elastic waves, we consider here a simplified one-dimensional model of a spin
system, consisting of a linear chain of classical identical spins, illustrated in Fig. 9.43.
Consider that the chain has N spins with magnitude S, uniformly spaced and sepa-
rated by a distance a, coupled with the nearest neighbors by the exchange interaction
in Eq. (9.31). The total exchange energy of the chain is given by

Uexc = −2 J
∑

i

�Si · �Si+1, (9.108)

where J is the nearest neighbor exchange parameter and �Si denotes the classical spin
at the coordinate xi = ia. In the ground state all spins are parallel, as in Fig. 9.43a, so
that with �Si · �Si+1 = S2 the exchange energy of the system becomesU0 = −2 J N S2.

In the early studies of the magnetic properties of matter, Pierre Weiss considered
that the first excited state consisted of one localized spin reversed, as in Fig. 9.43b.
In this case, the exchange energy of the linear chain becomes U1 = U0 + 8 J S2.
Although the Weiss molecular field model explained well the overall temperature
dependence of the magnetization in ferromagnets, in 1930 Felix Bloch showed that
the low-lying excitations of the spin system consisted of nonlocalized, collective spin
deviations. Bloch called these excitations spin waves, and showed that they dominate
the magnetic thermodynamics at low temperatures.

We treat spin waves in the linear chain of spins with motion governed by the
classical mechanical equation for the torque. The torque acting on the spin �Si with
its associated magnetic moment �μi = −gμB �Si , given by Eq. (9.73), is written in the
form �τ = �μi × �BT , where �BT is an effective field representing all interactions on
the spin �Si . This field can be found considering that the energy of the moment has
the form Ui = −�μi · �BT . Comparison with Eq. (9.108) shows that in the linear spin
chain the effective field arising from the exchange interaction is

�Hef f
exc = − 2J

gμBμ0
(�Si−1 + �Si+1). (9.109)

Fig. 9.43 a Linear chain of classical spins in the ground state. b Linear chain of spins in an excited
state with one spin reversed
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We consider that in addition to the exchange interactions with their neighbors, the
spins are subject to an applied static magnetic field �H , so that the total field acting
on the spins is �BT = μ0( �H + �Hef f

exc ). Using the torque equation d��S/dt = �τ we
obtain the equation of motion for the spin �Si

d �Si
dt

= −γμ0 �Si × ( �H + �Hef f
exc ), (9.110)

where γ is the gyromagnetic ratio, defined in Eq. (9.76). Since the magnetic moment
has a direction opposite to the spin, to be consistent with the ground state depicted in
Fig. 9.43a, we consider that the external field is applied in the −ẑ direction, so that
�H = −ẑH . Then the equation for the spin component Sx

i becomes

dSx
i

dt
= γμ0 S

y
i [H + 2J

gμBμ0
(Szi−1 + Szi+1)] − γμ0

2J

gμBμ0
(Sy

i−1 + Sy
i+1) S

z
i .

Considering that the amplitude of the spin excitation is small, we linearize this
equation using Sx

i , Sy
i << Szi ≈ S. Then the equations for the two transverse spin

components become

dSx
i

dt
= γμ0 H Sy

i + 2J S

�
(2 Sy

i − Sy
i−1 − Sy

i+1), (9.111)

dSy
i

dt
= −γμ0 H Sx

i − 2J S

�
(2 Sx

i − Sx
i−1 − Sx

i+1). (9.112)

Equations (9.111) and (9.112) show that the motion of the spin in any site is
coupled to the motions of the neighboring spins, indicating that their solutions must
be collective excitations. Consider for possible solutions spin excitations in the form
of harmonic travelling waves

Sx
i = Ax e

i (k xi − ω t), Sy
i = Ay e

i (k xi − ω t), (9.113)

where ω is the angular frequency and k is the wave number. Substitution of (9.113)
into Eq. (9.111) leads to

−i ω Ax = Ay [γμ0 H + 2 J S

�
( 2 − e−i k a − ei k a)], (9.114)

where we have cancelled the term exp i(kxi − ωt) on both sides. Equation (9.114)
can be written as

−iωAx = Ay[γμ0H + 4J S

�
(1 − cos ka)]. (9.115)

Similarly, we obtain from Eq. (9.112)
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−iωAy = −Ax [γ H + 4J S

�
(1 − cos ka)]. (9.116)

Equations (9.115) and (9.116) can be written in matrix form.

[
iω [γμ0H + 4J S

�
(1 − cos ka)]

−[γμ0H + 4J S
�

(1 − cos ka)] iω

](
Ax

Ay

)
= 0.

(9.117)

The solution of Eq. (9.117) is obtained by equating the main determinant to zero,
which gives for the frequency

ωk = γμ0H + 4J S

�
(1 − cos ka). (9.118)

This is the dispersion relation for spin waves in the linear spin chain. Substitution
of Eq. (9.118) in either (9.115) or (9.116) gives the relation between the amplitudes
of the spin components Ay = −iAx = −iA0. Thus, the real parts of the transverse
spin components become

Sx
i = A0 cos(kxi − ωk t), Sy

i = A0 sin(kxi − ωk t), (9.119)

while the longitudinal component is Szi ≈ S. These equations show that the classical
picture of a spin wave in one dimension consists of spins precessing circularly about
the equilibrium direction, as illustrated in Fig. 9.44 at a certain instant of time. In
a travelling wave propagating in the +x direction, the spin precession has the same
amplitude along the chain and has a phase that varies with the position as φi = kxi.
The shortest distance between two spins precessing with the same phase corresponds
to the wavelength, related to the wave number by λ = 2π /k.

A quantum formulation of this problem shows that spin waves are quantized.
Their quanta are called magnons, that have energy � ωk . For the one-dimensional
chain just studied the magnon frequency is

Fig. 9.44 Illustration of a spin wave in a linear chain of classical spins propagating in the
+ x direction. The distance between the two spins at the ends corresponds to one wavelength.
a Top view of the spins. b Side view
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ωk = γμ0H + ωZ B

2
(1 − cos ka). (9.120)

whereωZ B = 4 J S/� is the zone boundary frequency in the absence of applied field.
This equation shows that for k = 0 the magnon frequency is determined only by the
magnetic field intensity ω0 = γ μ0H , which is the FMR frequency in Eq. (9.81).
This is due to the fact that if all spins precess in phase, there is no contribution from
the exchange energy. As the wave number increases, the difference in the precession
phase of neighboring spins increases and so does the exchange energy.

Figure 9.45a shows themagnondispersion relation over the positive side of thefirst
Brillouin zone. For magnetic field intensities typical of laboratories, the frequency
gap at k = 0 is many orders of magnitude smaller than the frequency for ka = π,
which is situated in the terahertz range, and cannot be seen in the plot. Spin waves
with small wave numbers are important for many magnonic phenomena. Using the
binomial expansion of the exchange term in Eq. (9.120) for ka � 1 we obtain the
dispersion relation for small wave number magnons

ωk ≈ γμ0(H + Dk2), (9.121)

where

D = 2J Sa2

γ �μ0
(9.122)

is called exchange parameter. Equation (9.121) obtained for a linear spin chain, is
actually valid for a 3-dimensional spin system with only the exchange interaction. It
reveals that magnons have a quadratic dispersion relation, similar to electrons in an
uniform potential, Eq. (3.33), as shown in Fig. 9.45b. The unique feature of magnons,
that is important for many applications, is the fact that their frequencies can be easily
tuned by the applied magnetic field.

The field of science and technology that employs spin waves for information
transport and processing is known as magnonics, or magnon spintronics. Besides
the frequency tuneability, spin waves have other unique features that make them
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Fig. 9.45 Dispersion relation for magnons in a linear chain. a View of the full Brillouin zone.
b Zoom near the origin (ka << 1)
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Fig. 9.46 Building blocks of magnon spintronics. Information encoded into charge or spin currents
is converted into magnon packets that are processed in the magnonic system and converted back.
Reproduced from A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands, Nat. Phys. 11,
453 (2015), with permission by Springer-Nature

suitable for information processing. One of them is that spin-wave packets can be
easily excited inmagnetic films bymicrowave current pulses in a simplewire antenna
and propagate over distances of hundreds nanometers or several micrometers. The
most commonly used materials are single-crystal YIG films that have very small
damping, and metallic permalloy films that have higher damping than YIG but are
suitable for microsized patterning. The scheme in Fig. 9.46 shows a few magnonic
analog and digital devices and the interfaces with converters to and from electronic
and spintronic carriers. Severalmagnonic devices have been demonstrated in research
laboratories but they are still not available in commercial products.

Problems

9.1 (a) From the definition (9.9) of the angular momentum operator, obtain the
expressions for the L2 and Lz operators. b) Show that the orbitals ψ110 and
ψ111 of the hydrogen atom are eigenstates of the L2 and Lz operators and that
the eigenvalue equations satisfy the relations (9.10) and (9.11).

9.2 Apply Hund’s rules to obtain the ground states of the ions Ni2+ and Eu2+ and
calculate the corresponding g-factors.

9.3 An atom with S = 1/2 and L = 0 is placed in a magnetic field H = 2 kOe.
Calculate the frequency, in GHz, of the photon emitted in a magnetic dipole
transition between the two spin states in the field.

9.4 A paramagnetic sample has 4 × 1022 cm−3 ions with S = 2 and L = 0.
Calculate the magnetic susceptibility of the sample at T = 4 K and T =
300 K.

9.5 Iron crystallizes in the bcc structure, with a lattice parameter a = 2.87 Å.
Considering that the magnetic moment of iron is 2.22 μB per atom, calculate
its saturation magnetization and compare with the value in Table 9.2.
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9.6 Iron has a Curie temperature Tc = 1,043 K. Calculate its molecular field and
the J1 exchange constant.

9.7 A permanent magnet has the shape of a cylindrical rod with diameter 2 cm
and length 10 cm, with a uniform magnetization, parallel to the axis, with
value 4πM = 15 kG. Calculate the field created by the magnet at three points
on its axis, 1 mm, 10 mm, and 50 mm apart from one of the cylinder bases.

9.8 Consider a permanent magnet in the form of a thin disk, with uniformmagne-
tizationM perpendicular to the plane. Calculate the fields B and H at a point
external to the disk, close to the surface of the north pole. Locate the operating
point of the magnet in the curve of Fig. 9.21.

9.9 An electromagnet has a magnetic circuit like the one in Fig. 9.22, with a
cylindrical core made of iron, with diameter 10 cm, length 120 cm, and
air gap distance 5 cm. Considering a winding with 200 turns, calculate the
magnetic field at a point close to the center of the air gap surface, produced
by a current of 10 A.

9.10 Show that the functions ψ1, ψ2, and ψ3, given by Eqs. (9.63)-(9.65), satisfy
the Poisson Eq. (9.53) for the magnetic potential in the geometry of Fig. 9.25,
which represents a magnetic tape with a recorded sinusoidal signal.

9.11 (a) Calculate the wavelength of a 1 kHz signal, recorded on a magnetic tape
with speed 20 cm/s.
(b) Calculate the distance of a point to the tape at which the magnetic field
created by the tape is 5% of the value on its surface.

9.12 A magnetic tape with magnetization M = 500 emu/cm3, thickness 15 μm,
and track width 1 mm, slides at a speed of 20 cm/s under an induction reading
head with 20 turns, efficiency 0.8, at a distance of 2 μm. Calculate:

(a) The signal frequency for which the reproduction amplitude is
maximum;

(b) The value of the output signal in this condition.

9.13 From Eqs. (9.85) and (9.86), show that the rf magnetic susceptibility tensor
of a ferrite is given by Eqs. (9.90)–(9.91).

9.14 An electromagnetic wave with frequency 9.8 GHz propagates along the
field H, in a ferrite with parameters M = 300 emu/cm3, g = 2, �H = 50
Oe, ε = 4ε0. (a) Considering that the wave is circularly polarized in the
− direction, calculate its absorption coefficient for H = 1 kOe and H = 3.5
kOe.
(b) Calculate the absorption coefficient for the same fields as in item a), for
a wave circularly polarized in the + direction.

9.15 If thewave in the previous problem is linearly polarized, calculate the Faraday
rotation angle, in rad/cm, for the two field values given.

9.16 The microwave magnetic field propagating in a rectangular waveguide, in the
fundamental mode, has two components:

hx = − ikga

π
h0 sin

(πx

a

)
eikgz−iωt ,
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hz = h0 cos
(πx

a

)
eikgz−iωt ,

where z is the direction along the guide, x is the large transverse direction,
a is the width of the waveguide (in the x direction), h0 is the amplitude of
the longitudinal field and kg is the wave number in the longitudinal direction,
given by

kg = 1

c
[ω2 − (πc/a)2]1/2,

where c is the speed of light. Considering that a X-band waveguide has
dimension a = 2.3 cm, determine the distance from the side wall where
a ferrite plate should be placed for the device to operate as an isolator for
9.4 GHz.

9.17 Calculate the group velocity of a spin-wave packet propagating in a single-
crystal YIG sample with a wave number peak at k = 6 × 105 cm−1,
considering that YIG has an exchange parameter D = 5.4 × 10−9 Oe cm2

and gyromagnetic ratio γ = 2π × 2.8 × 106 s−1 Oe−1.
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Chapter 10
Other Important Materials
for Electronics

In this chapter we present the basic physical properties and some applications of
certain materials important for electronics, not studied in the previous chapters.
Dielectric materials find a variety of applications in electronics since its emergence
in the beginning of the twentieth century. In the last decades these applications have
become more diverse and sophisticated with the discovery of new materials and
phenomena and the development of optoelectronics and photonics. These dielectric
materials and their applications are the subject of the first two sections. Then we
describe basic properties of phosphorescent ceramics, liquid crystals and organic
conducting materials, that find increasingly sophisticated applications in displays
and screens of video monitors. The last section is devoted to superconductivity, the
main properties and basic physics. Superconductingmaterials already have important
applications and a great potential for many more, but the full realization of this
potential still depends on the development of new materials and technologies. In the
last section we briefly introduce their application in quantum computers.

10.1 Dielectric Materials

As we saw in Chap. 4, materials with a large energy gap between the valence and
conduction bands do not have electrons in this band and, therefore, they are electrical
insulators. Insulators are of great importance for electronics, since they are neces-
sary to assemble or electrically isolate wires and parts of devices and circuits. The
most used materials in these applications are ceramics of inorganic oxides, resins,
and a wide variety of polymeric materials commonly called plastics. However, free
electrons are not the only ones responsible for the response the materials to external
electric fields. In general, insulators have ions or molecules that, under the action of
an external field, undergo small displacements or reorientations. In this way, even
without producing electric currents, these materials present a response to an electric
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field. They are called dielectric materials, and find various specific applications in
electronics.

10.1.1 Polarization of Materials

The behavior of dielectric materials in an external electric field is determined by
the properties of their microscopic electric dipoles. These dipoles can be perma-
nent, or induced by the external electric field. They are produced by the separation
between the positively charged nuclei and the negative electrons in the atoms, ions, or
molecules that form the material. Materials that have permanent microscopic elec-
tric dipoles are called polar, while those that do not have permanent dipoles are
nonpolar. When the material is submitted to an external electric field, this exerts
opposite forces on positive and negative charges, so that the dipoles are oriented as
illustrated in Fig. 10.1. As a result, the dipoles create a field that superimposes to
the external field and determines the dielectric response of the material. The electric
dipole created by separating two charges of opposite signs, ±q, distant from each
other by a displacement vector �d, has a dipole moment.

�p = q �d. (10.1)

Macroscopically, the quantity that represents the dielectric state of a material is
the polarization vector �P , defined analogously to the magnetization vector, that is,
as the electric dipole moment per unit volume

�P = 1

V

∑

i

�pi , (10.2)

Fig. 10.1 Orientation of the microscopic electric dipoles under the action of an external electric
field
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where the summation is carried out over all points i where the microscopic dipoles
are located inside a volume V. As in the magnetic case, the volume should be large
enough for a good macroscopic media, but small relative to the sample size, so that
�P represents a local property. Recall that �P is related to the electric field vector �E
and the displacement vector �D through relations that depend on the system of units.
In the SI

�D = ε0 �E + �P, (10.3)

where ε0 = (4π × 9 × 109)−1 C2/Nm2 is the permittivity of vacuum. Note that the
unit C2/Nm2 is equivalent to farad/meter. The unit of E is V/m, while the unit of D
and P is C/m2. In the CGS ε0 = 1, so that the relationship between the fields is

�D = �E + 4π �P . (10.4)

Contrary to the magnetic case, where the SI and CGS systems are equally used,
in the electric case the most used system is the SI. For this reason, we will not
make much use of the CGS in this section. In vacuum, since there are no dipoles,
P = 0 and therefore D = ε0E. The response of a dielectric to an electric field can
be expressed by the electric susceptibility χ, or by the permittivity ε. In the case of
simple dielectrics, the field �E produces a polarization �P in the same direction, so
that χ is a scalar. By definition

χ = P

ε0E
, ε = D

E
. (10.5)

The relationship between these quantities, obtained by substituting (10.5) into
Eq. (10.3), is

ε = ε0(1 + χ). (10.6)

It is also common to use the relative permittivity, or dielectric constant, defined by
εr = ε/ε0. The response of a dielectric to an external field varies with the frequency
of the field. A typical form of variation of the susceptibility χ (ω) with frequency is
shown in Fig. 10.2. In the near infrared, visible, and ultraviolet regions, the response
is dominated by electron transitions in atoms, as studied in Sects. 8.2.2 and 8.3.1.

In the infrared region, the main contribution to χ (ω) comes from the interaction
between the field and the ions that form the material. This contribution is illustrated
in Fig. 10.3a, that shows the effect of an electric field on the ions of a crystal lattice,
represented by a linear chain. The field displaces the ions of charges + and − in
opposite directions, producing a typical vibrationmotion in the optical mode, studied
in Sect. 2.2. The susceptibility can be calculated using a model similar to the one in
Sect. 8.2.2, and considering that the field interacts with the charge ions +q and −q.
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Fig. 10.2 Variation of the susceptibility of a dielectric with the frequency of the applied electric
field

With this model it can be shown that the contribution of the ions to the susceptibility
is

χion(ω) = Nq2/mrε0

ω2
0 − ω2 − iω�

, (10.7)

where mr = M1M2/(M1 + M2) is the reduced mass of the ions with massesM1 and
M2, N is the number of unit cells per unit volume, ω0 is the angular frequency of the
optical vibration mode at k = 0 and � is the damping rate. The ionic contribution
to the response of dielectric materials is important in the infrared region, because
optical vibration modes of the crystal lattice have frequencies in this region. The
amplitude of this response is smaller than the contribution of electrons in the visible
region because the mass of the ions is larger than that of electrons. It is important
to note, however, that although the contribution of electrons, given by Eq. (8.36),
is larger in the visible region, it is still significant at lower frequencies. Since the

(a) (b)

EE

- -+ +
- +

+

Fig. 10.3 Illustration of two mechanisms of dielectric response to an applied electric field: a Ionic;
b Dipolar
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ionic contribution adds to that of electrons, χ does not have a zero in the infrared
region, as shown in Fig. 10.2. At frequencies below the infrared region, the dielectric
response of certainmaterials contains a dipolar contribution that adds to the ionic and
electronic components. This occurs in dielectrics that havemoleculeswith permanent
dipoles, as illustrated in Fig. 10.3b. The application of the field tends to produce a
rotation of the dipole moments in its direction. Although this trend is partly cancelled
by the effect of thermal agitation, there is a resulting moment in the direction of the
field.

10.1.2 Capacitors

One of the most traditional applications of dielectric materials in electronics is in the
fabrication of capacitors. Figure 10.4 shows a simple capacitor made of a dielectric
layer between two parallel metallic plates. One of the basic functions of the capacitor
is to store charge, and therefore electric energy.When a voltage V is applied between
the plates, an electric field is created in the direction of the plate + to the plate −.
Away from the edges the field is uniform, with intensity E = V /d, where d is the
distance between the plates. Since the capacitance of the capacitor isC =Q/V, where
Q is the modulus of the charge on each plate, to calculate C it is necessary to relate
the electric field with the charge. For this we use the integral form of Eq. (2.1),

∮

S

�D · d�a =
∫

ρ dV = q, (10.8)

where ρ is the density of free charges, and q is the total free charge inside the volume
limited by the closed surface S. Application of Eq. (10.8) to a cylinder containing a
base inside one of the metal plates and the other in the dielectric, where there are no
free charges, gives

D = σ = Q

A
, (10.9)

Fig. 10.4 Parallel plate
capacitor
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where σ is the surface density of free charges on the inner surface of the positive
metallic plate, whose area is A. From this result and with V = Ed, we obtain the
capacitance as a function of the capacitor dimensions and the permittivity of the
dielectric

C = σ A

V
= εE A

V
= ε

A

d
. (10.10)

Note that since as ε > ε0, the presence of the dielectric increases the capacitance
relative to its value with air between the plates. To better understand the role of
the dielectric in the capacitor, let us look at the behavior of the polarization in the
dielectric. The polarization vector �P is created by the electric field �E , and therefore
it is directed from the + plate to the − plate. In this situation the microscopic
dipoles induced by the field are uniformly distributed and directed downwards as in
Fig. 10.4. As a result, the charges that form the dipoles cancel each other inside the
dielectric. However, on the two surfaces this cancellation does not occur, resulting
in the formation of surface charges. They are called polarization charges and result
from the discontinuity of �P on the surface. Note that the charges are negative at the
top surface of the dielectric and positive at the bottom surface, due to the direction
from top to bottom of the non-compensated dipoles. For this reason, they are also
called depolarization charges.

Formally these charges can be introduced using an equation similar to (2.1), or
its integral form. Denoting by ρp the volumetric density of polarization charges, we
have

∇ · �P = −ρp,

∮

S

�P · d�a = −
∫

ρp dV . (10.11)

Application of the integral form of (10.11) to a cylinder with a base inside the
dielectric layer and the other outside, shows that the modulus of the surface density
of polarization charge is σ p = P. Finally, the relationship between the polarization
charge and the electric field, obtained by replacing Eqs. (10.3) and (10.11) in (2.1)
gives

∇ · ε0 �E = ρ + ρp = ρt , (10.12)

where ρ t is the total charge density, resulting from the sum of free and polarization
charges. The integral of (10.12) leads to

ε0

∮

S

�E · d�a =
∫

(ρ + ρp) dV = qt . (10.13)

This is Gauss’s law for the electric field in the presence of dielectric materials. The
electric field is created by the sum of the free and polarizing charges, as if they were
in vacuum. The importance of this result for the capacitor comes from fact that the
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polarization charges have sign opposite to the free charges. As a result, for a certain
charge Q in the capacitor, the presence of the dielectric results in an electric field
smaller than there would be without it. This produces a smaller potential difference
V and, thus, larger capacitance.

Several dielectric materials are used to make capacitors. As presented in Chap. 7,
in integrated circuits the oxides of the own semiconductors are used to manufacture
capacitors. A common type of capacitor used in the past was the paper capacitor. It
was made by two aluminum sheets intercalated with sheets of wax paper. The set was
rolled up to form a small cylinder and encapsulated after welding the wire terminals
on the aluminum foils.

A very common type of capacitor used today is the electrolytic one. In the past
the electrolytic capacitor used a liquid or a paste of a dielectric electrolyte solution.
Subsequently, theywere replaced by an oxide film, deposited on a sheet of aluminum,
or tantalum, through the electrolysis of an electrolytic solution. In this technique, after
the formation of the film with the desired thickness, the liquid solution is removed.
The surface of the film is then covered with a metallic layer, forming the second plate
of the capacitor. The set is finally rolled up into a cylinder. The film can be made
with very reduced thicknesses, in the range of 1–10 nm, making possible to obtain
capacitances in the range 1–105 μF.

Twodielectricmaterialswidely used in electrolytic capacitors are aluminumoxide
and tantalum oxide. These oxides are easily formed on sheets of the corresponding
metals. These materials have relatively high permittivity and also high dielectric
strength, or breakdown field (Eb). This is the maximum electric field that a material
can sustain without undergoing breakdown and becoming electric conductive. This
field limits the maximum voltage that can be applied to a capacitor. In the case of
tantalum oxide εr ≈ 28 and Eb ≈ 108 V/m.

Finally, there are several ceramics used as dielectrics in capacitors, making
possible to obtain capacitances in a wide range of values. One advantage of ceramics
over oxides is their much higher resistivity. As a result, ceramic capacitors have lower
losses than electrolytic capacitors. Table 10.1 presents the main parameters of some
important dielectrics for electronics.

Table 10.1 Relative
permittivity εr = ε/ε0 at low
frequencies and dielectric
strength Eb of some dielectric
materials at room temperature

Material εr Eb (106 V/m)

Bakelite 4.8 12

Mica 5.4 160

Aluminum oxide (Al2O3) 10 5

Tantalum oxide (Ta2O5) 28 100

Titanium oxide (TiO3) 94 6

Paper 3.5 14

Porcelain 6.5 4

Fused quartz (SiO2) 3.8 8

Teflon (PFTE) 1.9 60
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10.1.3 Piezoelectric Materials

Piezoelectricity is the property that some dielectrics have of developing a polarization
when subjected to a mechanical stress. As shown in the previous section, the
polarization produced by a voltage creates polarization charges and, therefore, an
electric field. Conversely, the application of an electric field to a piezoelectric mate-
rial results in a mechanical deformation (called reverse piezoelectric effect). In both
cases, the change in the direction of the disturbance produces an inversion in the
direction of the effect. These phenomena were discovered at the end of the nine-
teenth century by Pierre Curie, who coined the name piezoelectricity to the effect
(piezo means pressure).

Figure 10.5 shows in a two-dimensional model how the compression of a crystal
induces an electric dipole moment in the direction of the deformation. In the crystal
without deformation, as in (a), the three dipoles formed by ion A and its neighbors
(each charge is divided into three) have total moment null. However, when the crystal
is deformed as indicated in (b), the angles between the dipoles produce a resulting
moment in the direction of deformation.

It is important to note that there can be no piezoelectricity in crystals with a
center of inversion symmetry. This property can be demonstrated generically from
symmetry relations between fields. Physically it can be understood with the two-
dimensional model in Fig. 10.6. Note that in the square lattice with inversion
symmetry, the total electric dipole moment is null, both in the equilibrium situa-
tion in (a), and in the deformed lattice in (b). Piezoelectricity is not restricted to
insulators. It also occurs in several semiconductors, such as CdS and ZnO.

Fig. 10.5 Illustration of the origin of piezoelectricity. a In a crystal in equilibrium, the total electric
dipole moment is zero. b Electric dipole resulting from mechanical deformation is not zero
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Fig. 10.6 Demonstration of the absence of piezoelectricity in crystals with a center of inversion
symmetry

The application of a mechanical stress in a certain direction of the crystal
results, in general, in a polarization at a different direction. Thus, the relationships
between various quantities involved in piezoelectricity are tensorial. However, in
some particular symmetry directions of the crystals, the vectors are in the same
direction. In this case the relations are scalar and can be written in the form

P = dT + ε0χE, (10.14)

R = sT + dE, (10.15)

where T is the stress applied to the material (force per area unit), E is the applied
electric field,P is the induced polarization, andR is the resulting deformation per unit
length. The constants d, s and χ are characteristic parameters of each material. The
constant d is the one that characterizes piezoelectricity, because it relates the induced
polarization with the applied mechanical stress, or the deformation produced by an
applied electric field. Since R is dimensionless, d has the inverse unit of the electric
field, m/V in the SI, or cm/statvolt in the CGS. Actually, each material has several
dαβγ piezoelectric constants, relating the polarization induced in the α direction with
the βγ component of the tensor that characterizes the mechanical stress. Since α can
assume 3 values and βγ can assume 3 × 3 values, the piezoelectric tensor can have
27 components. However, due to the symmetry of the crystal, several components
are equal to others and several are null, so that only a few are relevant.

Currently, about one thousand piezoelectric materials are known, but practical
applications are dominated by only a few of them. The piezoelectric and dielectric
constants of themost importantmaterials are presented in Table 10.2. One of themost
traditional piezoelectric crystals is quartz (SiO2), whose longitudinal piezoelectric
constant is d11 = 2.3 × 10−12 m/V. To have an idea of the meaning of this value,
consider a quartz disc of thickness l = 1 mm, subjected to a voltage V = 100 V. The
variation �l in the disk thickness, given by (10.15), is
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Table 10.2 Values of the
largest components of the
piezoelectric constant and
dielectric constant tensors of
important piezoelectric
materials

Material d (10–12 m/V) εr

Piezoelectric

Quartz (SiO2) −2.3 4.5

Turmaline −3.7 6.3

Aluminum oxide (Al2O3) 21 40

Ferroelectric

Barium titanate (BaTiO3) 390 2900

PZT (Pb0.5Zr0.5 TiO3) 370 1700

�l

l
= d

V

l
, (10.16)

which is only �l = 2.3 × 10−10 m = 2.3 Å.
In genuinely piezoelectric materials, the polarization is zero in the absence of

mechanical stress or external electric field, as shown in Eq. (10.14). There is another
class of materials, which will be presented in the next section, in which there is a
spontaneous polarization in the absence of external fields. They are called ferroelec-
tric materials and, as will be shown in the next section they have a piezoelectric
effect. The ferroelectric and piezoelectric materials most important for application
in electronics are lithium niobate, barium titanate, and lead and zirconium titanate,
this one known as PZT, whose parameters are in Table 10.2. PZT is generally used
in the form of polycrystalline ceramics, sintered under an external electric field.
The application of the field during the cooling process produces an alignment of the
crystalline grains along a certain crystallographic axis, so that the material exhibits
a macroscopic piezoelectric effect. The PZT ceramic is widely used today because
of its high piezoelectric constant, d33 = 3.7 × 10−10 m/V, about two hundred times
larger than in quartz.

An important application of piezoelectric materials is in the fabrication of elec-
tromechanical transducers for the generation of elastic waves, as illustrated in
Fig. 10.7. In applications with low frequencies (up to tens of kHz) the most used
material in transducers is PZT, while at higher frequencies (≥1 MHz) crystalline
quartz is the most used. The transducer is formed by a disc, or a rectangular plate, of
PZT or quartz, with the two faces covered bymetallic films. Themetallic cover of one
of the faces is extended to the side edge to allow electric contact with an external wire.
A voltage applied between the electrodes creates an electric field in the piezoelectric
material, resulting in a mechanical deformation. When the transducer is placed in
contact with another material, the application of an ac voltage generates an elastic
wave in the material. This technique is used to generate ultrasonic waves, used in
medical, scientific, and industrial equipment. The reflected ultrasonic waves carrying
information on the probed material are converted into an electrical signal by another
receiving transducer, or by the transmission transducer itself.
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Fig. 10.7 a PZT piezoelectric transducer. b Use of the transducer to generate ultrasonic (elastic)
waves

Although quartz has a much smaller piezoelectric effect than PZT, it finds several
important applications in electronics due to its low acoustic loss. This propertymakes
a block of crystalline quartz to be an excellent mechanical resonator, with a very low
damping rate. The application of a voltage pulse to the block causes a mechanical
vibration, which in turn creates an oscillating electric voltage through the piezo-
electric effect. Thus, the quartz block with metallic films on two opposite sides is
electrically equivalent to a parallel RLC resonant circuit. The vibration frequencies
depend on the dimensions and shape of the block. In the case of a thin plate with
parallel faces, the fundamental resonance mode corresponds to a stationary acoustic
wave, successively reflecting at the two faces, having a wavelength equal to twice
the thickness of the plate. Thus, for a plate of thickness l and acoustic wave velocity
v in the direction perpendicular to the face, the oscillation frequency is

f = v

2l
. (10.17)

The wave velocity depends on the crystallographic direction of the cut of the
crystal. For the so-called X-cut in quartz, v = 5.4 × 103 m/s. So, a crystal with
thickness 1mm in this cut, oscillateswith a frequency of 2.7MHz.Due to the resonant
oscillation, the variation in thickness is much larger than in the DC situation, given
by (10.16).

Quartz crystals are used to synchronize electronic oscillators for watches,
computers, radio and TV transmitters and receivers. The oscillator consists of an
amplifier circuit with feedback, using a small quartz plate with metallic contacts on
the two opposite faces instead of aRLC resonant circuit. Figure 10.8 shows the circuit
symbol for the quartz crystal and its equivalent electric circuit. The quartz oscillators
have two advantages relative to RLC circuits: at frequencies of few MHz, they have
much smaller losses, so that their resonance quality factor is much higher (in a RLC
circuit the quality factor is Q = ωL/R); the stability of the resonance frequency in a
quartz crystal is much higher than in a RLC circuit.
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Fig. 10.8 a Circuit symbol
of a quartz crystal oscillator.
b Equivalent electric circuit

Finally, another important application of piezoelectric materials is in surface
acoustic wave (SAW) devices. The simplest SAW device, shown in Fig. 10.9, is
formed basically by a substrate slab of quartz or lithium niobate, having one polished
surface, on which two interdigital transducers (IDT) are made. Each transducer
consists of a metallic film, deposited on the substrate, having the shape of two combs
with intercalated fingers. An ac voltage applied between the two transducer termi-
nals, produces an elastic deformation in the region near the surface. This generates
an acoustic wave that propagates in the slab, confined to a superficial layer, with
velocity similar to that of volume waves. This acoustic surface wave is detected by
the second transducer, which converts the acoustic signal into an electric signal. Since
two neighboring fingers have opposite polarities, the efficiency of the transducer is
maximum for a frequency whose acoustic wavelength is twice the distance between
them. The SAW technology is used to manufacture several signal processing devices
with frequency in the range of tens or hundreds ofMHz, such as delay lines and filters.
Before the advent of this technology, these devices were bulky, made by series of
tuned circuits of discrete capacitors and inductors. The development of SAW devices
made possible the miniaturization and the integration of circuits for the VHF and
UHF frequency bands.

Fig. 10.9 Surface acoustic
wave (SAW) device



10.1 Dielectric Materials 433

10.1.4 Ferroelectric Materials

Ferroelectric materials are those that have a spontaneous polarization in the absence
of external fields. This spontaneous polarization originates from the electric dipole
moment that appears in the unit cell due to a displacement of the center of the posi-
tive charges relative to the center of the negative charges. This displacement results
from a small distortion in the crystal structure, which occurs below a certain critical
temperature, in order to minimize the energy of the system. Figure 10.10 shows the
unit cell of barium titanate (BaTiO3), indicating the displacement of positive ions
that produces the electric dipole moment.

Example 10.1 Calculate the displacement of the Ti4+ ion relative to the center
of the unit cell in BaTiO3, considering that at T = 300 K its spontaneous
polarization is Ps = 0.26 C/m2 and that the lattice parameter is a = 4.0 Å.

Since the polarization is the electric dipole moment per unit volume, the
moment of the unit cell is

p = Ps a
3 = 0.26 × (

4.0 × 10−10
)3 = 1.66 × 10−29 Cm.

Considering that the total charge of the Ba2+ and Ti4+ ions inside the cell is
6e, this dipole moment results from a displacement given by

δ = p

6 e
= 1.66 × 10−29

6 × 1.6 × 10−19
= 0.17 × 10−10 m = 0.17Å.

Note that the displacement is much smaller than the dimensions of the cell.

The spontaneous polarization in ferroelectric materials disappears above a critical
temperature Tc, analogously to the magnetization in ferromagnets. Here Tc is also
called Curie temperature. In the case of BaTiO3, Tc = 393 K. Another important
ferroelectricmaterial, lithium niobate, LiNbO3, has Tc = 1470K. The polarization of
ferroelectric materials can be changed by the application of an external electric field

Fig. 10.10 Unit cell of
BaTiO3 showing the
displacements of the positive
ions that produce the electric
dipole moment
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Fig. 10.11 Hysteresis cycles of ferroelectric materials. a Rectangular cycle observed in crystals.
b Elongated cycle in aligned polycrystalline ceramics

E. Here there is also an analogy with the ferromagnetic case, since the variation of P
withE follows a hysteresis cycle like that ofM vs.H. In the case of single crystals, the
curve has a rectangular shape, shown in Fig. 10.11a, which resembles the hysteresis
cycle of permanentmagnets. Thematerial maintains a remanent polarizationPr , with
value close to that of saturation, after the electric field is removed. For applications
in which the E field varies in time the rectangular loop is undesirable, because the
variation of P is discrete and because the energy loss is large. This can be avoided
with the preparation of ceramic materials made of aligned crystalline grains. The
alignment is obtained through the application of an externalE field during the cooling
process. This process results in a thin and elongated hysteresis cycle, as shown in
Fig. 10.11b.

Ferroelectric materials are used in three different situations: applications that
require high permittivity dielectrics; applications based on the rectangular hysteresis
cycle; and as piezoelectric materials. The property that all ferroelectric materials are
piezoelectric can be understood by means of Fig. 10.12. In (a), a two-dimensional
model of a ferroelectric material shows that with no external mechanical stress, there

Fig. 10.12 Illustration of the
piezoelectric effect in
ferroelectric crystals.
a Crystal under no stress.
b Crystal under mechanical
stress showing the variation
�p in the electric dipole
moment

(a) (b)

p p + p
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is an electric dipole moment due to the displacement between the centers of positive
and negative charges. Figure 10.12b shows the crystal deformed by the application
of an external stress. We see that the deformation results in a variation �p in the
electric dipole moment of the unit cell, producing a polarization in the material.

10.1.5 Electrets

A special class of dielectric materials, with properties that resemble those of ferro-
electrics, is that of electrets. The electret is formed by a layer of dielectricmaterial on
which positive and negative electric charges are deposited in the fabrication process.
The charges remain trapped, close to the surfaces or inside the volume, generating
a macroscopic polarization and, therefore, an electric field. Figure 10.13 illustrates
various forms of charge trapping in electrets. In (a) the negative charges trapped on
the top surface of the layer induce compensation charges on the metallic film under
the layer. These compensation charges remain in the film because they cannot pass
through the potential barrier between the metal and the dielectric. The situation in
(b) is similar to (a), but the negative charges are trapped on the surface and inside the
dielectric layer. In (c) the + and − charges are inside the material, forming domains
that behave like electric dipoles.

A basic difference of an electret to a ferroelectric material, is that its polarization
gradually decays in time, that is, it is not permanent. This results from the fact that
the charges are placed artificially, generating a metastable state. The charges remain
trapped in local potential wells, but they can be released through thermal activation.
The charge decay time depends on the host material, the conditions of preparation of
the electret, and the temperature. Denoting by�E the average height of the potential
barriers that trap the charges, the charge decay time is

τ = τ0 e
−�E/kBT , (10.18)

where τ 0 is a characteristic time of the material and the preparation conditions. We
see then that the charge decay time decreases with the increasing temperature. This
is so because as T increases, the polarization gradually decreases, without a phase

Fig. 10.13 Illustration of some types of electrets. In a and b the bottom surface of the dielectric
layer is metallized
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transition as in ferroelectric materials. The decay time at room temperature can vary
from a few seconds to tens or hundreds of years. Therefore, although the polarization
of electrets is not permanent, for practical purposes materials with τ ∼ 100 years
behave as if they are quasi-permanent.

Electrets can be made from a wide range of materials, prepared using various
loading techniques. The first electrets studied were vegetable waxes. One of the
earliest recipes consisted of 45% carnauba wax, 45% white rosin, and 10% white
beeswax, melted, mixed together, and left to cool in a static electric field of several
kilovolts/cm. The thermo-dielectric effect, related to this process, was first described
by the Brazilian physicist Joaquim da Costa Ribeiro, a pioneer of solid-state physics
in Brazil. Many materials can be used to make electrets, organic substances such
as anthracene, naphthalene, and several polymers, as well as inorganic compounds,
such as quartz, sulfur, and ionic crystals. There are also several electrets of biological
materials, called bioelectrets, such as bones, teeth, tissues, proteins, etc. Among the
chargingmethods, themost important are: electric discharge in air fromahigh voltage
metallic plate near the surface of the material; various ionizing radiations, such as
X-rays, gamma rays, alpha particles, and ultraviolet.

The important electrets for electronics are polymer films, mainly of two types
of teflon, polyfluorethylene propylene (FEP) and polytetrafluoroethylene (PTFE).
They are made in the form of films with thickness in the range of 10–50 μm, metal-
lized by evaporation on one or both surfaces. The charges are produced by high
voltage discharge, with charge densities in the range 10−4–10−2 C/m2 and decay time
τ ∼ 109 s (∼32 years).

One of the main applications of electrets in electronics is in electrostatic trans-
ducers for microphones. The electret microphones are small, very sensitive and are
fabricated at very low cost. For these reasons, they have replaced the traditional
magnetic microphones in most applications. Figure 10.14 shows the cross section
of a simple electret microphone. It consists of a diaphragm formed by a teflon film
(FEP or PTFE) with thickness of the order of 20 μm, with the upper surface covered
by a metallic film (thickness ∼50–100 nm). The teflon film, containing a surface
charge as in Fig. 10.13a, is mounted on a metallic plate, supported on spacers that
leave an air layer with a certain thickness. When a sound wave hits the diaphragm,
it produces a deflection that varies the thickness of the air layer. Thus, the electric
field between the film and the metal plate produces a variation in the output voltage
proportional to the diaphragm displacement. With some modifications relative to the

Fig. 10.14 Illustration of the
cross section of a simple
electret microphone
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scheme of Fig. 10.14, the electret microphones acquire higher stability and better
frequency response.

10.2 Dielectric Materials for Optoelectronics and Photonics

The optoelectronic devices presented in Chap. 8 have themain function of converting
an electric signal into an optical signal, or vice versa. The development of optoelec-
tronics has resulted in devices for processing information directly on the optical
signal, avoiding the need for its conversion into an electronic signal, its processing,
and the conversion back into the optical signal. These devices have a much faster
response time than those that employ conversion to electronic signal and also less
insertion loss, and form the basis of the active field of Photonics. The operation of
several of these devices is based on the optical properties of dielectric materials that
we shall present in this section.

10.2.1 Electro-optic and Elasto-optic Effects

These two effects have a strong analogy with the piezoelectric effect, studied in the
previous section.When amacroscopic electric field is applied to a dielectric material,
it acts on the electric dipole moments and produces macroscopic effects. The action
of the field on the ionic dipoles results in a deformation of the crystalline lattice,
and therefore in the inverse piezoelectric effect. On the other hand, the action of the
field on the electronic dipoles, produces a change in the optical dielectric constant of
the material, giving rise to the electro-optic effect. This change comes mainly from
the variation of the electronic energy levels produced by the external field, known as
the Stark effect. This variation results in a change in the optical dielectric constant,
because as we saw in Chap. 8, this depends directly on the energies of the states
involved in the electronic transitions.

Like piezoelectricity, the electro-optic effect requires that the material does not
have an inversion symmetry. For this reason, piezoelectric crystals are also electro-
optic active. Since the dielectric constant of a crystal is characterized by a tensor
with 9 components, while the applied electric field is a vector with 3 components, the
relationship between them involves a tensor with 27 components. To avoid algebraic
complications, let us assume that the electro-optic tensor is dominated by one of its
components. In this case, the relationship between the applied electric field E and
the variation in the relevant optic dielectric constant εr takes the form

�

(
1

εr

)
= r E, (10.19)
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Table 10.3 Ordinary
refractive index n and main
electro-optic constant r in
some materials, measured at
the wavelength λ indicated

Material λ (nm) n r (10–12 m/V)

BaTiO3 514 2.44 820

CdTe 1000 2.84 4.5

GaAs 1150 3.43 1.43

KDP 514 1.51 10.6

LiNbO3 633 2.29 32.6

Quartz 514 1.54 0.53

Ti:LiNbO3 1500 2.20 31.0

where r is the electro-optic constant. Note that since εr is dimensionless, r has the
inverse unit of the electric field, which is m/V in the SI. The change in the dielectric
constant produced by the electric field produces a variation in the refractive index n
of the material. Since εr = n2, the variation of n with the applied field is given by

�n = −1

2
n3r E . (10.20)

The main electro-optic crystals are also the main piezoelectric materials, due to
the absence of inversion symmetry. Table 10.3 presents the refractive indices and
the values of the main component of the electro-optical tensor of some of these
materials. In the case of LiNbO3, n = 2.29 and r = 3.26 × 10−11 m/V for visible
light at the wavelength λ = 633 nm. Therefore, an electric field of E = 10 V/m
applied to this material produces a change in the refractive index of only �n = 1.96
× 10−4. Although small, this variation is sufficient to produce macroscopic effects
that enable the construction of electro-optic devices.

The elasto-optic effect, also called photoelastic, or acousto-optic, is the
phenomenon by which the elastic deformation of a material results in a variation
of the optic dielectric constant, and therefore in the refractive index. This effect
results from changes in the electronic energy levels resulting from the change in
the crystalline electric field, produced by the deformation of the lattice. Although
this effect is also characterized by a tensor, for simplicity we shall consider just the
simple case of the relationship involving the largest variation

�

(
1

εr

)
= p R, (10.21)

where p is the photoelastic constant and R is a component of the deformation tensor,
defined as the variation in the dimension of thematerial in a certain direction, per unit
length. Since εr and R are dimensionless quantities, the photoelastic constant is also
dimensionless. Table 10.4 shows the values of the main photoelastic constant and the
refractive index of somematerials. Note that fused quartz, lithiumfluoride, rutile, and
other materials in Table 10.4 have inversion symmetry and have a photoelastic effect.
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Table 10.4 Average
refractive index and main
photoelastic constant in the
visible region in some
dielectrics

Material n p

LiNbO3 2.25 0.15

LiF 1.39 0.13

Rutile (TiO2) 2.60 0.05

Sapphire (Al2O3) 1.76 0.17

Fused quartz 1.46 0.2

The reason for this is that the photoelastic tensor is characterized by components with
four indices, pαβγ δ . In this case, it is not necessary the absence of inversion symmetry
in the material for some components of pαβγ δ to be nonzero.

Like the electro-optic effect, the elasto-optic effect results in a variation of the
refractive index n of light produced by an elastic deformation, given by

�n = −1

2
n3 pR. (10.22)

In a piezoelectric material, the elasto-optic effect can give rise to an electro-optic
effect. The application of a field E produces a deformation R, given by Eq. (10.15),
which in turn results in a variation in the refractive index given by (10.22). Combining
these equations, we see that the electromagnetic optical constant resulting from this
indirect effect is r = dp. In the case of quartz, the values d and p in Tables 10.2 and
10.4 give r = 4.6 × 10−13 m/V, a value smaller than the electro-optic constant in
Table 10.3. This result, obtained here for quartz, is valid for other materials. This
means that the direct electro-optic effect produced by the variations of the electronic
structure caused by the electric field, is larger than the indirect effect, resulting from
the combination of piezoelectricity and photoelasticity.

The variation of the refractive index produced by the electro- and elasto- optic
effects gives rise to various phenomena of interest, both scientific and technological.
One of the most evident phenomenon is the birefringence induced by an electric
field, or by a mechanical deformation. When an electromagnetic wave propagates
in a material, having polarization components in two perpendicular directions, its
behavior is influenced by the indices of refraction in these two directions. Since
the direction of the refractive index change depends on the direction of the external
disturbance and the characteristics of the material, the electro- or elasto-optic effects
can produce variations in the refractive index in just one direction. Thus, if the
material in equilibrium is isotropic, the disturbance results in different indices in
the two directions. This birefringence causes a variation in the polarization of the
wave, which can be controlled by the external disturbance, either an electric field or a
mechanical deformation in the material. This phenomenon finds several applications
in photonics. In Sect. 10.2.3 we shall present some photonic devices whose operation
is based on the electro- and elasto-optic effects.
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10.2.2 Nonlinear Optical Materials

In the presentation of the electro-optic effect, we considered that the electric field
in the material was created by an external source. Actually, the field of an electro-
magnetic wave propagating in the material can produce an electro-optic effect. In
this case, the refractive index that determines the velocity of the wave depends on
the field amplitude in the wave. To quantify this phenomenon, consider the variation
in the polarization P(2) resulting from the electro-optic effect created by the electric
field E of the wave. Using Eqs. (10.5) and (10.19) we obtain

P (2) = ε0 �χ E = ε0 �εr E = −ε0 ε2r r E
2. (10.23)

This result shows that the contribution of the electro-optic effect to the polarization
varies with the square of the field, while the usual contribution is linear in the field.
Materials that have this property are called nonlinear optical materials. Only crystals
without inversion symmetry exhibit non-linear responses of the type in Eq. (10.23).
Actually, in addition to the quadratic nonlinearity of Eq. (10.23), it is possible to
have higher order contributions. The total polarization created by an electric field
can then be written in the form

P = ε0
(
χ(1) E + χ(2) E2 + χ(3) E3 + · · ·), (10.24)

where χ (1) is linear susceptibility, which we previously represented only by χ, while
χ (2) and χ (3) are the quadratic and cubic susceptibilities. Actually, the quantities E2

and E3 in Eq. (10.24) can be products of components of fields in different directions,
such as EβEγ and EβEγEδ , while P is the Pα component of the polarization vector.
Thus, in the most general case, the susceptibilities appearing in (10.24) are compo-
nents of the tensors χ

(1)
αβ , χ

(2)
αβγ , and χ

(3)
αβγ δ . While the tensor χ

(2)
αβγ is null in crystals

with inversion symmetry, the tensor χ(3)
αβγ δ is not necessarily null whatever the crystal

symmetry is.
Since the nonlinear effects vary with the square and the cube of the electric field,

they are important only for high field intensities, as illustrated in Fig. 10.15. The
nonlinear effects are manifested in high power waves, typically on the order or
above 1 MW/cm2. For this reason, the field of nonlinear optics was developed only
after the invention of the laser. The nonlinear optical effects have a wide variety
of applications in optics and photonics. One of the most evident is the mixture of
waves. When two waves with frequencies ω1 and ω2, with amplitudes E1 and E2,
respectively, propagate in a nonlinearmedium, they generate a polarizationP(2) given
by

P (2) = ε0 χ(2) E1 E2 e
i(±ω1±ω2) t . (10.25)
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Fig. 10.15 Illustration of the
deviation from linearity of
the polarization for intense
electric fields in crystals
without inversion symmetry

This polarization results in a third wave, with frequency given by the sum
or difference of the original frequencies. Another simple non-linear effect is the
doubling of the frequency resulting from the term χ (2)E2 in Eq. (10.24). This so-
called second-harmonic generation occurs naturally when a high-power wave
passes through a crystal without inversion symmetry, such as KDP, LiNbO3, or
quartz. However, to have an efficient second-harmonic generation, it is necessary
to cut the crystal in certain crystallographic directions, with a certain thickness, to
avoid destructive interference due to the dispersion. Since some important commer-
cial lasers operate in the infrared, second- and third- harmonic generators are widely
used to convert their radiation into visible light. This is the case of Nd:YAG lasers,
which operate at λ = 1060 nm. KDP frequency doublers converts this radiation into
green light, with λ = 530 nm, with efficiency higher than 60%.

10.2.3 Electro-optical Waveguide Devices

The dissemination of optical communications led to the development of several
devices for processing optical signals, and many of them are based on optical
waveguide technology. The basic idea of the waveguide is the same as in the optical
fiber, shown in Sect. 8.8. When a wave propagates along a medium with a certain
refractive index, surrounded by other media with a smaller refractive index, it may
suffer internal reflections and be confined to the region of the first medium. It is
possible tomanufacture waveguides for visible or infrared light wave on substrates of
a dielectric material or a semiconductor, using photolithographic and diffusion tech-
niques, similar to those used tomake integrated electronic circuits. Thesewaveguides
can be used to conduct the wave from one device to another, in a collection of devices
manufactured in the same substrate, constituting an integrated optical circuit.

Figure 10.16 shows a simple light waveguide used in optical devices. It is made of
a plate of dielectric material, such as quartz or LiNbO3, or a semiconductor, such as
GaAs or Si. The waveguide is made by means of the interdiffusion of a certain impu-
rity along a strip on the surface of the plate. The diffusion of the impurity produces a
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Fig. 10.16 a Light waveguide in a plate of a dielectric material or semiconductor. b Illustration of
methods to couple external light to the waveguide

channel of a material with refractive index larger than of the substrate, constituting a
light waveguide, as illustrated in Fig. 10.16a. The waveguide has a typical width of
few μm and the impurity normally used in LiNbO3 is titanium. Figure 10.16b illus-
trates twomethods used to couple external light to thewaveguide. In the first, the light
from a collimated laser beam falls on a prism and undergoes total internal reflection
on the surface in contact with the plate. This results in an evanescent wave that pene-
trates the plate, reproducing approximately the mode profile in the waveguide. This
method allows an efficient coupling of the waveguide with an external light beam,
both for input and output. In the case of coupling with optical fibers, the situation is
simpler, since the fiber mode has a configuration similar to that of the guide. Thus,
the coupling can be done simply by gluing the end of the fiber to the front surface of
the device, as shown in Fig. 10.16b.

A simple electro-optical device based on the guide in Fig. 10.16 is the phase
modulator. It consists of a waveguide in an electro-optic material, between two
electrodes made by deposition of metallic strips on the plate surface, illustrated in
Fig. 10.17. When a voltage V is applied between the electrodes, an electric field is
created through the guide. The field strength is given, approximately, by E = V /d,
where d is the distance between the electrodes. The field produces a variation �n in
the refractive index, resulting in a change in the lag suffered by the wave in the guide
along the electrodes, given by

Fig. 10.17 Electro-optical
phase modulator
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�φ = L �k = 2πL

λ
�n, (10.26)

where L is the length of the electrodes. Using Eq. (10.20), one can express the phase
change as a function of the applied voltage

�φ = −πn3 r

λ d
L V . (10.27)

We see that the phase change is proportional to the length of the electrodes and
the applied voltage. It is easy to see that the value of the LV product necessary to
have �φ = π is

(LV )π = λ d

n3 r
. (10.28)

Example 10.2 Calculate the voltage that must be applied between two elec-
trodes distant d = 7.0 μm, in a LiNbO3 electro-optic phase modulator, with a
Ti:LiNbO3 waveguide, for light with λ = 1.5 μm.

Using the parameters for Ti:LiNbO3 given in Table 10.3 in Eq. (10.28) we
have

(LV )π = 1.5 × 10−6 × 7.0 × 10−6

2.23 × 31 × 10−12
≈ 0.032Vm = 32Vmm.

This result means that for a modulator with an electrode of length 8 mm, a
voltage of 4 V is sufficient to produce a phase change of π.

Based on the electro-optic phase modulation, it is possible to build very efficient
light amplitude modulators. Figure 10.18 shows the basic scheme of an ampli-
tude modulator that uses a Mach-Zehnder interferometer, made of two Y-junctions
connected in opposite directions to two waveguides. A pair of electrodes is deposited
around one of the guides, so that a voltage applied to it produces a phase lag�φ in the
wave that propagates in this waveguide relative to the wave in the other guide. The

Fig. 10.18 Top view of an electro-optic amplitude modulator with a Mach-Zehnder interferometer
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wave incident in the input terminal 1 is divided equally between the two legs of the Y-
junction, giving rise to twowaves that propagate independently in the twowaveguides
with the sameamplitudeE1.At the output junction the twowaves superimpose, giving
rise to a wave whose amplitude is

E2 = E1 + E1 e
i�φ.

Since the output power is proportional to E2E∗
2 , it can be shown (Problem 10.5)

that the device transmission, defined as the ratio between the output and input powers,
T = P2/P1, is given by

T = 1 + cos�φ

2
, (10.29)

where �φ is proportional to the voltage applied to the electrodes, according to
Eq. (10.27). Figure 10.19 shows the transmission curve as a function of �φ. We see
that the transmission is maximum at �φ = 0, that is, when the applied voltage is
zero. In the ideal device the maximum value is 1, but in real devices there are losses
due to reflections in the connections and at the junctions, reducing the maximum
transmission to about 0.5 (corresponding to an insertion loss of 3 dB). The trans-
mission drops to zero at �φ = π, 3π, etc., which allows digital on/off modulation
for V varying between 0 and the value given by Eq. (10.28). The device can also
be used for analog signal modulation. For this, it is necessary to superimpose the ac
signal with a DC polarization voltage so that the operation point lies in the linear
region around �φ = π /4 (point A in Fig. 10.19). Commercial electro-optic modu-
lators operate with voltages of few volts and have a modulation bandwidth larger
than 1 GHz, in the case of analog signals, or modulation rate above 1 Gbit/s, for
digital signals. The waveguide technology is used for the fabrication of a variety of
other electro-optic devices for optical communications, such as switches, directional
couplers, multiplexers, etc.

Fig. 10.19 Transmission of
the amplitude modulator as a
function of the offset angle
�φ, which is proportional to
the applied voltage. A is the
operating point for
modulation of analog signals
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10.3 Materials for Video Displays

One of the most important functions in electronics is the conversion of information
contained in electric signals into visual information. In the early days of electronics,
the main purpose of this function was to indicate the status of an equipment to the
external user. Then, with the invention of television, it became an essencial function
for the presentation of sequences of images forming a motion picture. Today, this is
a basic component for television displays, video equipment, computer monitors, and
a wide variety of mass consumption mobile devices, as well as in vehicles, aircrafts,
appliances, and many equipment for scientific, medical, and industrial applications.

Until the 1970s, light displays were made with incandescent or gas bulb lamps, of
different sizes, while television displays, computer, and scientific equipment moni-
tors employed a cathode-ray picture tube, called kinescope. Then, light indicators
began to be replaced by solid state devices, using electroluminescent displays, liquid
crystals, and light emitting diodes, which are much more efficient, resistant, and
economical. Only in the 1990s video monitors using kinescope tubes began to
be replaced by solid state displays. In this section we shall present materials and
devices used in the manufacture of video displays that were not studied in Chap. 8,
phosphorescent ceramics, liquid crystals, and organic conductors.

10.3.1 Phosphorescent Ceramic Materials

As we saw in Chap. 8, luminescence is the property that some materials have of
emitting light in radiative transitions from excited states to lower energy states. Two
common forms of luminescence are photoluminescence and electroluminescence. In
the first, electrons are excited to higher energy states by means of photon absorption,
while in the second the excitation results froman electric stimulus.Materials that have
these properties are called, respectively, photoluminescent and electroluminescent.

An important class of electroluminescent materials is that of semiconductors, that
emit light with the passage of an electric current. As we saw in Chap. 8, the current
in a forward-biased junction diode produces injection of electrons and holes, which
emit light in the recombination process. Another class of technological importance
is that of phosphorescent ceramics, which can be excited electrically or optically in
many ways. One electric excitation process is the bombardment by electrons at high
speed, as in an electron beam.When they collide with the atoms of the material, they
take some bound electrons to excited states. Then, they quickly relax to states with
longer lifetimes and subsequently undergo radiative transitions to lower energy states,
emitting photons with energy determined by the difference between the energies of
the states involved, as studied in Sect. 8.3. Another form of electric excitation of
phosphorescent ceramics is the application of an intense electric field. When the
field exceeds the value of dielectric strength, which is of the order of 106 V/cm,
certain atoms are ionized and the ejected electrons are accelerated. Then they collide
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with other atoms, taking them to excited states and producing luminescence by the
process described above.

Two important properties of luminescent materials that determine their applica-
tion is the decay time of the radiative transition and the spectrum of the emitted light.
The decay time determines the duration of the light pulse produced after the external
excitation.When this time is on the order of nanoseconds or less, the process is called
fluorescence. In this category are the light emission by interband transitions in direct
gap semiconductors and the emission by atomic transitions in ionized gases of fluo-
rescent lamps. On the other hand, when the duration of the emission is on the order
of milliseconds or longer, the process is called phosphorescence. Phosphorescent
materials were very important in electronics for their application in the manufacture
of video screens. A motion picture is formed by a series of still images, each one
differing slightly from the preceding one. If the duration of each image is of the order
of tens of milliseconds, the observer has a visual sensation of a continuous change
in the picture. Thus, it is important that the duration of the luminescence, also called
persistence, be of tens of milliseconds. Times shorter than this give the sensation
that the image blinks, as in a strobe, while longer times result in a blur, because a
new image is formed before the previous one disappears. Phosphorescent ceramic
materials employed in video screens are generically called phosphors, to account
for the literal meaning of the word, they light up when excited. They are phosphate
compounds, oxides, tungstates, sulphates, and sulphites of various metals, such as
zinc and cadmium, insulators or semiconductors, doped with impurities of iron tran-
sition elements or rare earths. The impurities used are those that have metastable
states adequate for the luminescent transitions. The chemical composition deter-
mines the persistence and the light emission spectrum, and therefore the application
of the materials in phosphors.

Themost important application of phosphors in electronics is in video screens. The
oldest technology employed cathode ray tubes (CRT), also called kinescopes, which
were used extensively for several decades in television receivers, computer monitors,
and many other equipment. Figure 10.20 shows the external view of a kinescope,
consisting of a tube of reinforced glass, evacuated and sealed, with pyramidal shape
and having an elongated neck at the end. Inside the neck there is an electron gun,
consisting of a cathode and several electrodes, that produces the electron beam.
This is directed to the front face by means of a high voltage applied between it and
the cathode. The front face is internally covered by a phosphor layer, that when
bombarded by electrons emits light that is transmitted through the glass and seen
externally.

The electron gun is made of a heated cathode, a grid and some electrodes, all
mounted in a socketwith pins for the external connections.When heated by a tungsten
filament with an electric current, the cathode emits electrons that are accelerated by
the voltages applied to the electrodes, forming a monoenergetic beam, that is, with
little velocity dispersion. When focusing on the phosphor layer, the electron beam
produces a bright spot on the tube screen.
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Fig. 10.20 Illustration of a
kinescope, or picture tube

The formation of the image on the screen requires two processes: scanning the
beam, so that the lighted spots produce a picture frame on the entire area of the
screen; modulation of the beam intensity, that is, variation of the number of electrons
per unit time, so as to change the brighness of the spot according to the electric
video signal. The beam is scanned by the magnetic fields created by two pairs of
coils placed outside the kinescope neck, as illustrated schematically in Fig. 10.20.
Only one pair of coils is shown to facilitate the view. The coils create a magnetic
field in the vertical direction that deflects the beam horizontally. Another pair of
coils, in the vertical plane, creates a horizontal field for the vertical deflection. The
coils are fed by voltage signals that produce currents that vary in time in the form
of a saw-tooth periodic wave, shown in Fig. 10.20. This waveform makes the beam
scan the screen in one direction, and quickly return in the opposite direction. The
simultaneous application of the currents in the two pairs of coils causes the lighted
spot to scan the screen in the horizontal and vertical directions, however, each vertical
scan corresponds tomany horizontal sweeps, as illustrated in Fig. 10.21a. The lighted
spot describes a zig-zag motion, from left to right in the horizontal direction, and
from top to bottom in the vertical direction. In the standard-definition TV system
(SD-TV), a picture frame consists of 525 horizontal lines, and the motion picture
has 60 frames per second. Thus, the frequency of the saw-tooth wave of the current
in the vertical deflection coils is 60 Hz, while in the horizontal deflection it is 525 ×
60 Hz = 31.5 kHz.

For the formation of a black-and-white image, it is necessary to vary the intensity
of the beam as it scans the screen, so that the brightness of each spot corresponds
to that of the image. The variation in beam intensity is made by means of a voltage
signal applied to the grid of the electron gun, which controls the number of the
electrons in the beam. Figure 10.20 shows the waveform of an analog video signal
during a time interval of two periods of the horizontal scan. The video signal is such
that higher amplitudes produce darker spots. Thus, as the beam scans the screen, the
black-and-white picture frame is formed by the horizontal lines scanned from left to
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Fig. 10.21 Illustration of the scanning process in video displays. a In a kinescope screen the light
spot describes a zig-zag motion to form a picture frame. b In solid-state displays, the pixels are lit
in sequence, from left to right, from top to bottom

right, and displayed from top to bottom. The spikes at the ends of the scans are used
as synchronization pulses. They serve to trigger the return in the oscillator circuit
that generates the saw-tooth current, so as to synchronize the screen scanning with
that of the camera that produced the video signal. During one horizontal scan there
are about 200 variations in the video signal, such that its frequency is on the order of
6 MHz. This is the bandwidth needed for the transmission of analog video signals.

The color CRT displayworks basicallywith three systems ofmonochrome images
in the same tube, with three identical electron-gun devices, that produce three inde-
pendent parallel electron beams. The three beams are emitted with the same kinetic
energy so that they are equally deflected by the deflection coils. The intensity of
each beam is determined by the video signal corresponding to each color. There are
two technologies for the layout of the electron guns. They can be one above the
other, in a vertical alignment, or arranged at the vertices of a triangle. In the first,
the phosphors of the three colors are deposited in horizontal lines on the screen, so
that each electron beam hits a different line. In the second, the three phosphors are
deposited in small adjacent circles, with the centers at the vertices of a triangle, so
that each circle is hit by one of the three beams. The information on the intensities of
the three colors is carried by the video signal through a time-multiplexing process.
The time interval of the signal corresponding to one pixel of the image is subdivided
into three shorter intervals, one for each color, red, green and blue. This signal is
decoded at the receiver, so that the information on the intensity of each color is
processed, generating a voltage signal that acts on the corresponding electron gun.
Despite several drawbacks, such as fragility, size, weight, and large power consump-
tion, cathode-ray tubes were used for image displays in TV receivers, computers,
and a variety of equipment for many decades. Only in the 1990s they began to give
way to solid-state displays, initially with electroluminescent ceramics in flat-screen
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TV receivers and with liquid-crystal displays in notebooks. Then, a variety of tech-
nologies were developed, most based on light emitting diodes, either with inorganic
semiconductors or with organic conductors.

The first solid-state technology used in video displays that replaced the CRT
screens in various applications employed electroluminescent ceramic devices. In an
electroluminescent display, or ELD, the luminescence is produced directly in a piece
of a ceramic material by an intense electric field, as described in the beginning of
the section. This technology made possible the manufacture of displays with flat
screen, with less weight, less power consumption, and longer lifetimes than CRT
kinescopes. Figure 10.22 illustrates an electroluminescent device that produces light
when subjected to an adequate electric voltage. It consists basically of five layers,
deposited on a substrate using thin film preparation techniques. The phosphor is a
layer of an electroluminescent ceramic with thickness of the order 500–1000 nm. It is
excited by the electric field created by the voltage applied between the two electrodes,
which are isolated from the phosphor by means of two layers (about 300 nm) of
insulating material. The most used insulators are aluminum oxide, Al2O3, and an
alloy of Al, Ti, and O, known as ATO. One of the electrodes is a thick metallic layer,
for example Al, that reflects the light emitted by the phosphor. The other electrode is
a layer (about 300 nm) of a transparent conductor, such as indium-tin oxide, known
as ITO. For the light emission by the phosphor it is necessary that the electric field
exceeds the dielectric strength of the material, so in general the applied voltage is
pulsed and alternating, with amplitude in the range 120–200 V.

Each piece of the image, called pixel, is formed by three different devices of
the type in Fig. 10.22, each with a different color phosphor. Among the most used
phosphor materials are ZnS:Mn, ZnS:Cl, and CaS:Eu for the red color, ZnS:Tb and
SrS:Ce for green, and Ga2S3:Ce, SrS:Eu, and SrS:Ag for blue. The intensity of the
light emitted by each device is controlled by the repetition rate of the pulses of the
applied voltage during the corresponding interval in the video signal. Combining the
emission intensities in the devices of the three colors, it is possible to obtain any
color of the visible spectrum. The screen is made up of hundreds of thousands of

Fig. 10.22 Illustration of an electroluminescent device used in ELD displays
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Fig. 10.23 Schematic
illustration of an array of
electrodes used to apply the
voltages to the pixel cells in
a solid-state image display

pixels, arranged side by side in rows and in columns, forming an array as illustrated
in Fig. 10.21b. The image is produced by lighting the pixels in sequence, through
a process of horizontal and vertical scans, following the same pattern previously
described for kinescopes. The application of the voltage in each device is made
through a mesh of addressing electrodes, schematically illustrated in Fig. 10.23, also
manufactured using thin films techniques with appropriate masks.

The voltage in the form of pulses is applied between a line electrode and a column
electrode, so that the device connected to these electrodes lights up. For example, in
the case of Fig. 10.23, the device that is lit is the one corresponding to the green cell
of the pixel in row 3 and column 4. The pixels are lit one at a time, in sequence, and
with the intensity determined by the video signal, in a scanning process similar to
that of the electronic beam at the cathode-ray tube.

ELD screens had several advantages over CRT kinescopes, such as less weight,
higher mechanical resistance, thinner display, longer lifetime, and lower power
consumption, so they gradually replaced the tubes in TV receivers, desktop computer
monitors, medical and industrial equipment, etc. However, due mainly to the need of
hundreds volts to light the phosphor, which is not convenient for portable equipment,
in few years they gave way to LED displays in TV receivers and other equipment.
At the same time, liquid crystal displays became the best technology for the use in
notebooks, tablets, mobile phones, and a variety of other applications.

One technology that was also used in large flat video screens is the plasma display
panel (PDP). The plasma screen is also based on emitting devices that employ lumi-
nescent materials, such as the phosphorescent ceramics used in CRT tubes and ELD
screens. The difference to the others is that the light emission occurs by photolumi-
nescence, and the excitation is produced by ultraviolet radiation emitted by a plasma.
The screen is made of hundred thousands glass cells with the format illustrated in
Fig. 10.24. The cells are hermetically sealed and contain a mixture of xenon-helium
gas at low pressure.When an AC voltage of the order of 100 V is applied between the
addressing electrodes, there is a discharge in the gas and the emission of ultraviolet
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Fig. 10.24 Illustration of a plasma cell

radiation. This radiation excites the phosphor layer deposited on the bottom of the
cell, causing it to emit visible light. Figure 10.25 illustrates the arrangement of cells
in a color PDP screen, which is powered by a mesh of addressing electrodes, like the
one in Fig. 10.23. Plasma screens are durable, display bright images that can be seen
in a large range of angles, and for several years were the best choice for large TV
displays. However, due to the need of high voltages and the high fabrication costs, in
the last decade they lost market and were gradually replaced by other technologies.

Currently, the most used technologies for computer monitors and small TV
receivers are liquid crystals display (LCD) with LED backlight and thin-film tran-
sistor liquid-crystal display (TFT-LCD). The main technologies for large TV screens
employ semiconductor light emitting diodes (LED), organic light emitting diodes
(OLED), and quantum dot display (QLED). In all of them, the screen is made of

Fig. 10.25 Schematic illustration of a solid-state color video screen
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a large number of pixels, each with three light emitting devices arranged side-by-
side in rows, such as in the schematic illustration of Fig. 10.25. In one standard of
high-definition television (HD-TV), a picture frame has 1080 lines, instead of 525
as in the SD-TV, and each line has 1920 pixels. Thus, the number of pixels in one
frame is 1920 × 1080, which is approximately two million pixels. Since the video
information for one pixel is carried by several pulses, and a motion picture has 60
frames per second, the bandwidth required for a simple video signal exceeds several
hundredMbit/s, much larger than the 4MHz bandwidth of SD-TV. The transmission
of HD-TV video signals by carrier waves with frequencies in the usual TV bands
was only made possible by the techniques for digital signal compression developed
in recent times.

10.3.2 Liquid Crystals

As presented in Sect. 1.4.4, liquid crystals consist of elongated molecules, oriented
approximately along the same direction, with no fixed positional order, so they can
flow as in a liquid. One characteristic of liquid crystals that distinguish them from
common liquids, is that theirmolecules are long and relatively rigid. It is the “contact”
between long molecules that prevent them from occupying random directions, as in
an isotropic liquid. A layer of molecules in a liquid crystal is, to a certain extent,
similar to a set of wood logs, floating on the surface of a river.

Actually, the liquid crystal is a phase that certain substances exhibit in a
temperature range between the solid phase and the liquid phase. Figure 10.26 illus-
trates the positions and orientations of molecules of a certain substance in three
temperature ranges characterizing the solid, liquid, and liquid crystal phases. At T <
T 1 the binding energy of themolecules dominates, so that they occupy fixed positions
and exhibit positional and orientational order, characterizing the solid crystalline
phase. At T > T 2 the thermal energy dominates, breaking the bonds between the
molecules and making them have random positions and orientations, characteristics

Solid

Temperature

Liquid
crystal Liquid

Fig. 10.26 Illustration of the positions and orientations of the molecules of a certain substance,
characterizing the solid, liquid, and liquid crystal phases
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of the liquid phase. The intermediate temperature range, T 2 < T < T 1, corresponds to
the liquid crystal, where the thermal energy is sufficient to overcome the molecular
bond without destroying completely the orientational order of the molecules.

The average direction of orientation of the molecules in the liquid crystal phase is
called director, and represents a preferred alignment direction. The orientation of the
molecules varies randomly over time, maintaining an average along the director. This
situation resembles the configuration of the magnetic moments in a ferromagnetic
material at high temperatures but still below Tc. However, in a liquid crystal the
molecules also have a random displacement motion and can flow as in a liquid. It
is customary to characterize the ordered phase of a physical system by an order
parameter, that usually varies with temperature. The order parameter in magnetic
materials is the magnetization, while in ferroelectrics is the polarization. In liquid
crystals, the order parameter in a region with N molecules is defined by

S = 1

N

∑

i

(
3 cos2 θi − 1

)
/2, (10.30)

where θ i is the angle between the direction of each molecule and the director. Note
that S is an angular average whose value is 1 for a system with a perfect orientational
order (θ i = 0) and 0 for an isotropic system (Problem 10.7). Figure 10.27 shows the
typical behavior of the order parameter of a substance with a liquid crystal phase.
The order parameter gradually decreases with temperature in the liquid crystal phase,
dropping sharply to zero in the transition to the liquid phase, that occurs at the critical
temperature Tc.

The main application of liquid crystals is in various types of displays, simple ones
for signs and alphanumeric symbols, and more sophisticated ones for images and
picture motion. The liquid crystal display, known by the acronym LCD, is of the
passive type, that is, it does not generate its own light. For this reason, its energy
consumption is very low, which gives it a huge advantage over the emissive displays
in applications that use small batteries, such as wristwatches and hand calculators.

There are two basic types of LCDs, reflection and transmission. In both types the
liquid crystal has the role of changing the polarization of the light provided by other

Fig. 10.27 Variation with
temperature of the order
parameter in a substance in
the liquid crystal phase
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sources, such as external ambient light, or internal produced by a lamp or a LED. The
LCD reflection mode uses front light, while the transmission mode uses backlight.
The device consists of a liquid crystal layer, with thickness of the order 10 μm or
less, placed between two transparent glass slides or plastic sheets, sealed at the ends,
forming a closed cell. The surfaces of the layers have transparent conducting films,
such as ITO, used to create an electric field by an applied voltage, that acts in the
liquid crystal. The effect of LCDon the external light is produced by the liquid crystal
molecules, oriented in a direction that can be altered by the electric field.

Among the types of liquid crystals presented in Sect. 1.4, the most used in LCDs
is the nematic one. A simple LCD cell is made with a nematic liquid crystal between
two plates with internal surfaces that are treated in order to force the molecules of
the closest layers to orient themselves in the plane of the surfaces. If the two plates
have alignment directions perpendicular to each other, with no applied electric field
the director gradually changes from one surface to the other, as shown in Fig. 10.28a.
When a voltage V is applied between the plates, the electric field tends to reorient the
molecules in its direction, which is perpendicular to the surfaces. The reorientation
occurs for fields larger than a threshold value ET , corresponding to a voltage VT on
the order of a few volts.

The action of the liquid crystal on the external light is due to the strong polarization
produced by the organic molecules. When polarized light passes through the cell
with no electric field, as in Fig. 10.28a, its polarization follows the orientation of
the molecules and undergoes a 90° rotation. However, for voltages in the range
VT < V < Vb, the electric field changes the orientation of the molecules so that the
angle α of the polarization of the light that passes through the cell can be controlled
by the applied voltage, as in Fig. 10.28b.

Figure 10.29 illustrates the operation of an LCD reflection device. It consists of
the liquid crystal cell, two crossed polarizer sheets P1 and P2, and a mirror to reflect
the incident light. The external light, initially depolarized, incident from left to right,
becomes vertically polarized going through the polarizer P1 and enters the liquid

Fig. 10.28 Illustration of the orientation of the molecules of a liquid crystal in an LCD cell with the
applied voltage V. a V = 0. b Variation with the applied voltage of the angle α of the polarization
vector of the light after passing through the LCD cell
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Fig. 10.29 Illustration of the operation of a LCD reflection device

crystal cell. If no voltage is applied to the cell, the polarization rotates by 90°, so that
the light passes through the polarizer P2, reflects on the mirror and returns, as shown
in Fig. 10.29. Thus, with V = 0, the incident radiation is reflected by the device,
which looks bright to an external observer on the left side. On other hand, when the
applied voltage is such that V > VT , the polarization angle of the light passing by the
LCD cell is controlled by the voltage, so that the intensity of the light transmitted by
the polarizer P2 and reflected the mirror varies with the voltage. Thus, the brightness
of the LCD device seen by the external observer is controlled by the applied voltage.

An LCD display consists of an array of LCD devices with a mesh of addressing
electrodes, such as the one in Fig. 10.23. Each device for operation in the reflection
mode is made of an LCD cell, two polarizers, and one mirror, all glued together, as
shown in Fig. 10.30. It has total thickness of few μm and lateral dimensions of few
mm. The electrodes are connected to the transparent metallic films on the two outer
surfaces of the cell in each LCD device. The addressing mesh feeds the frame of
pixels, so that each one has brightness determined by the applied voltage. Since the
liquid crystal is insulating, the current through the cell is extremely small, so that the
power consumption is very small. Actually, the use of DC voltages tends to shorten
the lifetime of the LCD because after a number of cycles there are electromechanical
reactions that hinder themotion of themolecules. For this reason, alternating voltages
with square-wave form are used, with frequency in the range of 25 Hz to 1 kHz. This
produces capacitive currents that result in a small increase in power consumption.

After dominating the market for displays in wrist watches, hand calculators and
electronic equipment in general, liquid crystals entered the segment of video screens
for computers monitors and TV receivers, initially black and white, and then color.
Currently, liquid crystal video displays operate mainly in the transmission mode,
in which cells such as the ones in Fig. 10.30 without the mirror are illuminated

Fig. 10.30 Illustration of the cell of a liquid crystal reflection display (LCD)
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from the back side by light emitting diodes. The performance of LCD screens is
greatly improved by means of active-matrix techniques. These techniques consist of
incorporating to each pixel a semiconductor device, a diode or a transistor. Since
the activation of the liquid crystal pixel has a non-linear response, and it requires
voltages V >VT , the incorporation of a nonlinear semiconductor device increases the
addressing possibilities. This allows the fabrication of screens with higher contrast
and brightness, and therefore better image quality.

The liquid crystals used in LCD displays are organic compounds, with molecules
formed by two or three benzene rings bound directly to each other. These compounds,
synthesized in the last decades, have great chemical stability and exhibit liquid crystal
phase in extensive ranges of working temperatures. As mentioned earlier, the only
function of the liquid crystal is to vary the polarization of light, making possible to
control its intensity by means of crossed polarizers. The colors of the cells that form
the pixels on the color video displays are created by optical filters made of dielectric
layers. The techniques for the fabrication of video screens employ the deposition
of successive layers of thin films, so as to manufacture the semiconductor devices
integrated with the liquid crystal cells and the color filters.

10.3.3 Organic Conducting Materials

Themain characteristic of organic materials is that their molecules are hydrocarbons,
that is, composed of carbon and hydrogen atomswith covalent bonds. The plantworld
and the animal world are formed by organic compounds produced by nature. In the
twentieth century, the technology for the manufacture of artificial organic materials
was developed, making possible the commercial production of a wide variety of
materials for different applications. Currently, more than two million organic mate-
rials are known. They can be grouped into two broad categories, polymeric materials
and non-polymeric materials.

Polymeric materials, commonly called plastics, have a huge variety of applica-
tions in our daily life. As shown in Sect. 1.4.3, polymers consist of molecules with
long chain structure, formed by the repetition of simpler units, called monomers.
These chains are easily formed by C and H atoms, so polymers are generally organic
materials. Thewealth of polymers stems from the fact that small changes in the consti-
tution of monomers result in profound changes in its physical-chemical properties.
Although polymers can be synthesized from awide variety of rawmaterials, themost
economical manufacturing processes are based on the transformation of petroleum
derivatives. This is why the continuous emergence of new plastic materials after the
Second World War is associated with the evolution of the petrochemical industry.

Polymericmaterials used in traditional sectors of industry are electrical insulators.
In electronics, they are essential formanufacturing different parts and pieces, such as,
wire jackets of electric cables, insulating supports, equipment cases, buttons, knobs,
and other pieces. Since traditional plastics are insulating, it caused a big surprise in
the 1970s the discovery of new electrically conducting polymers, having electrical
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properties that resemble those of metals, semiconductors, or even superconductors.
These materials are also known as non-conventional polymers. Recently these mate-
rials have found unusual applications in electronics, and several organic conductor
devices are already commercially manufactured. The possibility of obtaining mate-
rials for practical use, combining electrical properties typical of inorganic materials
with certain features of plastics, such as mechanical flexibility and optical trans-
parency, has motivated intense research activity in the field of conducting polymers.
Several of recent developments in this area are due to discoveries and scientific
contributions made by Alan J. Heeger, Alan G. MacDiarmid, and Hideki Shirakawa,
who received the Nobel Prize in Chemistry in the year 2000.

The binding of the atoms that form the polymer chains is of the covalent type,
in which the valence electrons are shared by neighboring atoms. This binding is of
the same type that exists in most inorganic semiconductors, but it is much stronger
than metallic and molecular bonds. Each C atom, like Si and Ge, has four valence
electrons, that are sharedwith the neighboring atoms. It is the strong covalent bond of
atoms along the chain that gives cohesion to polymers. This enables the fabrication
of thin sheets of plastic, with thicknesses of the order of some μm, with malleability
not found in sheets made of other types of materials.

In contrast to the strong cohesion along the chains, the binding between neigh-
boring chains is of the molecular type, so it is weak. For this reason, plastics
commonly used are made with interlaced chains, in order to produce uniform resis-
tance in all directions. However, for application in electronics, it is important that the
material has the highest structural order as possible. This can be achieved through
polycrystalline structures, like the one illustrated in Fig. 10.31. The material consists
of regions of ordered polymer chains, separated by amorphous regions.

One of the most studied conducting polymers is polyacetylene. It consists of a
chain of monomers containing only C and H atoms, represented by (CH)x. It is a
conjugate polymer, a name given to polymers that have carbons along the chainwith
alternating bonds, one single bond with one neighbor, and one double bond with
another neighbor. Polyacetylene can be synthesized with two distinct structures,
called cis and trans, shown in Fig. 10.32. Since the two structures have identical
chemicals formulas, they are called isomers. In the cis structure, the H atoms bound

Fig. 10.31 Illustration of a polycrystalline polymer
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Fig. 10.32 Two polyacetylene isomers: a cis-(CH)x ; b trans-(CH)x

to neighboring C atoms with double bonds are on the same side of the carbon chain,
while in the trans structures, theH atoms are bound toC atoms alternately, on opposite
sides of the chain. Thus, the neighboring H atoms are closer to each other in the cis
structure than in the trans configuration. Polyacetylene is normally synthesized in cis
form. Heating at 150 °C for someminutes produces the isomerization and transforms
the cis form into the trans structure.

The different configurations of the H atoms in the cis-(CH)x and trans-(CH)x
monomers result in very distinct electronic band structures, and therefore in different
electric properties. While cis-(CH)x is electrically insulating, trans-(CH)x is a semi-
conductor. Figure 10.33 shows the band structures of trans-(CH)x, calculated for
different distances of the carbon-carbon bonds. Since in conjugate polymers there
are two types of bonds along the chain, it is necessary to consider two distances
between neighboring carbons, d1 for the C–C bond, and d2 for C = C. Figure 10.33
shows that the energy gap Eg between the valence and conduction bands depends on
the distance of the bonds. In (a), with equal distances, d1 = d2 = 1.39 Å, the gap is
zero, and therefore the polymer behaves as a metal. Figure 10.33b shows that slightly
different distances, d1 = 1.43 Å and d2 = 1.36 Å, are already sufficient to produce

Fig. 10.33 Energy bands in
trans-(CH)x polyacetylene
for different distances of the
bonds C–C (d1) and C = C
(d2): a d1 = d2 = 1.39 Å;
b d1 = 1.43 Å, d2 = 1.36 Å;
c Actual values d1 = 1.54 Å
and d2 = 1.34 Å.
Reproduced from P. M.
Grant and I. P. Batra, Solid
State Communications 29,
225 (1979), with permission
from Elsevier
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an energy gap. As can be seen in Fig. 10.33c, a larger difference between the bond
distances, d1 = 1.54 Å and d2 = 1.34 Å, results in a larger gap. This is the reason
why conjugate polymers, that necessarily have different bond distances d1 and d2,
are the ones that have semiconductor properties interesting for electronics.

The values of d1 and d2 used in Fig. 10.33c are the actual bond distances of
trans-polyacetylene at room temperature. They result in a band structure with direct
gap, with energy Eg = 1.5 eV. This value is small enough for electrons to go from
the valence to the conduction band by thermal excitation at room temperature. The
chemical consequence of the electron transfer from the valence to the conduction
band corresponds to the breaking of a double bond between the carbon atoms, that
when changing to a single bond releases one electron to conduct the electric current.
Electrons at the minimum of the conduction band have wave number k = π /a,
effective mass m∗ = 0.1 m0, and collision time τ e ~ 10−14 s. These values result in a
mobility along the chain, given by Eq. (5.49), of μn ~ 200 cm2/Vs. Comparing this
value with the data in Table 5.2, we see that it is of the same order of magnitude as
the hole mobility in the traditional Si and GaAs semiconductors. For this reason, a
sheet of trans-polyacetylene presents an optical brightness similar to that of silicon,
however with mechanical flexibility typical of plastics.

The electronic properties of trans-polyacetylene can be changed by doping with
donor or acceptor impurities, as in inorganic semiconductors. The p-type semicon-
ductor can be obtained with impurities of arsenic pentafluoride (AsF5) or iodine (I2),
diffused in (CH)x by means of vapor phase techniques or electrochemical processes.
With doping, electron transfer occurs from the atoms of the polymer chains to the
molecules of impurities, producing holes in the chains and consequently p-type
semiconductor behavior. Figure 10.34 shows the increase in the conductivity of
trans-(CH)x with the concentration of AsF5 and I2, expressed as a fraction of impu-
rity molecules relative to those of the polymer. It can be seen that the conductivity
varies almost seven orders of magnitude with doping by AsF5. Similar conductivity

Fig. 10.34 Variation of the
conductivity of
trans-polyacetylene with the
impurity concentration
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behavior is obtained by doping with alkali metal atoms, which produces a n-type
semiconductor. It is important to draw attention to the fact that the charge transport
mechanisms in conducting polymers is more complex than in metals and inorganic
semiconductors. These mechanisms involve the motion of conformational defects of
the type “soliton, or “polaron, that occur in the alternate bonds of conjugate poly-
mers andwhich have no analogous in traditional materials. Thus, quite generally, one
anticipates that solitons, polarons, and bipolarons will be the excitations of major
importance in this class of one-dimensional polymer semiconductors.

Note that polyacetylene is conceptually important, because the discovery of its
high conductivity upon dopingwas key to launch the field of organic conducting poly-
mers and its study helped in the understanding of other organic materials. However,
currently polyacetylene has no application in commercial devices. Other impor-
tant conjugate polymers with semiconductor properties are polyaniline (PANI) and
polyphenylene vinylene (PPV), whose chemical structures are shown in Fig. 10.35.
Polyaniline looks similar to the plastics used in photographic films. It was one of the
first polymers to be synthesized. Its manufacture is simple, low cost, and it is stable in
the air. It has well-known physical-chemical properties, and can be synthesized with
controlled impurities to produce suitable conductivities for different applications.
Polyaniline is also widely used for printed circuit board manufacturing, in the final
finish, for protecting copper from corrosion and preventing its solderability.

Figure 10.35b shows the chemical structure of PPV, that is stable up to tempera-
tures of 400 °C. It hasmechanical properties that allow itsmanufacture andprocessing
in the form of thin films, with thicknesses in the range 0.02–1 μm. One of its most
important property for application in electronics is electroluminescence. Similarly
to direct gap inorganic semiconductors, electrons and holes in PPV can undergo
recombination with the emission of photons with energy approximately equal to Eg.
An advantage of PPV over many inorganic semiconductors and that it produces light
in the visible spectrum, with wavelength that can be tuned by varying the distances
of chemical bonds in the chain.

In addition to non-conventional polymers, there is a wide variety of organic mate-
rials with properties of electric conductors. Some are even superconductors at very

Fig. 10.35 Chemical structures of the monomers of two important semiconductor polymers:
a polyaniline; b polyphenylene vinylene (PPV). In (b) the letters C and H indicative of the atoms
are omitted to simplify the notation
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low temperatures. A class of these materials which has been extensively investi-
gated is that of charge transfer salts. One of these most studied salts is TTF-TCNQ,
whose basic unit consists of a tetrathiafulvalene (TTF) molecule attached to a tetra-
cyanoquinodimethane molecule (TCNQ). These molecules have a flat structure that
aggregate on top of each other, forming layers of molecules, arranged along flat
sheets. In the bindingmechanism there is an electron transfer from the TTFmolecule,
called donor, to the TCNQ molecule, called acceptor. The overlap of the wave func-
tions along the stack produces a conduction band that is partially filled with electrons
from the charge transfer. As a result, the conductivity along the stack is reasonably
high, of the order of 2 × 103 �−1 cm−1, while the conductivity along the planes is
low, because the interaction between the layers of molecules is small. For this reason,
TTF-TCNQ has conductivity predominantly in one dimension.

Another important conducting organic material is aluminum hydroxyquinoline,
known as AlQ. It belongs to a class of compounds known as small molecule, because
it contains a number of atoms much smaller than in most organic compounds. Its
molecule is formed by anO3N3 group, surrounded by six benzene rings, some incom-
plete. AlQ is prepared in the form of small crystals, arranged in layers, that exhibit
conduction and electroluminescence properties similar to those of PPV. One of the
advantages of organic materials over inorganic ones is that they can be deposited
in the form of films with an ordered structure on a wide variety of substrates. The
manufacture of devices with organic materials has relatively low cost and can be
made on polymeric substrate sheets, which can be rolled up and used in unusual
applications. A disadvantage of organic materials is the low electron mobility. It is
of the order of 1 cm2/Vs in the best organic films, which is very low compared to
the values 103–106 cm2/Vs characteristic of inorganic semiconductors. This results
in low response speed of devices with organic conductors.

The main applications of electronic devices made of organic conductors are
biochemical sensors, thin polymer film transistors, and the organic light emitting
diode (OLED). The polymer transistor has low response speed compared to those
of silicon. For this reason, its use is restricted to low frequency applications, as is
the case of video displays. They are used in active-matrix liquid crystal displays,
in which each LCD device is activated by a polymer transistor. The advantage of
polymer transistor over silicon is its lower processing cost and the ease of its direct
deposition on the liquid crystal.

One of themost important uses in commercial products of organicmaterial devices
is the OLED, used in optical displays and image screens. Figure 10.36 shows the
basic structure of an OLED. It consists of a transparent substrate, glass or plastic,
on which five films are successively deposited: a positive metal electrode or anode;
three layers of conductive organic materials; and one negative metallic electrode.
The positive electrode is made of a transparent conductor, like ITO. The negative
electrode, or cathode, is a common metal film, such as aluminum, which reflects
visible light. The most used organic materials placed between the two electrodes are
PPV and AlQ, which with the addition of dyes emit light at any wavelength in the
visible range. The film that emits light, made of an intrinsic semiconductor, is located
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Fig. 10.36 Basic structure of an organic light emitting diode (OLED)

between a film doped with donor impurities and one with acceptor impurities, called
layers of electron and hole transport, respectively.

When a voltage is applied between the electrodes, in the direction shown in
Fig. 10.36, electrons are injected into the middle film by one layer, while holes
are injected by the other layer. The recombination of electrons and holes produces
light that is reflected by the aluminum film and is emitted by the front side through
the glass plate. A major advantage of this LED is exactly the fact that the light comes
out frontally, in a wide area, instead of the lateral emission confined to the junction
region, as in inorganic semiconductor diodes. Currently, OLEDsmade with PPV and
AlQ operate with voltages less than 10V and have conversion efficiency around 10%.
They are employed in mobile phones, tablets, digital cameras, and a variety of video
devices. In this segment they have supplanted liquid crystal displays because they
emit light frontally, with higher brightness and larger viewing angle. Recently, more
sophisticated OLED structures began to be used in large screens of TV receivers.

10.3.4 Touch-Sensitive Screens

A very important innovation introduced in the last two decades in electronic
equipment with image displays is the touch-sensitive screen, or simply touchscreen.
The image display can employ LCD or OLED, as used in smartphones, tablets, and
laptops. The touchscreen allows the user to give input or control the information
processing system through simple or multi-touch gestures by touching the screen
with the fingers or a special stylus. The user can react to what is displayed and, if
the software allows, to control how it is displayed, for example, zooming to increase
the image or text size. The touchscreen enables the user to interact directly with
what is displayed, rather than using a keyboard, mouse, or joystick. There are several
technologies for operating touchscreens, the two most important are called resistive
and capacitive.
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The resistive touchscreen has the simplest structure and was the first to be manu-
factured commercially. It is made of a few layers of transparent plastic, placed above
the screen that displays the image. The processing of the touch information can be
done in several ways. One of them employs two active layers, each having one of
its surfaces with thin parallel connecting lines, made with a resistive film. The two
layers, separated by a thin gap, have the surfaces with the lines facing each other and
oriented so that the lines of one are perpendicular to lines on the other. The gap is
maintained by means of protrusions in one of the plastic layers. In this way the two
layers form amatrix with rows and columns that define the coordinates of each point.
A voltage is applied to the lines of one of the layers in such a way that when the outer
layer is pressed by a finger, or a stylus, the two inner surfaces touch at that point and
the voltage is transmitted to the other surface. This allows the circuit to identify the
coordinates of the touch point on the screen. This process is done by pulsed signals
that scan the lines and columns of the screen and are controlled by a software for
processing the information. Resistive technology was introduced in electronic game
screens, bank ATM displays, industrial and medical equipment, and dominated the
market of touchscreens until about 2010.

The capacitive technology is themost used today in touchscreens of smart phones,
tablets, and laptop computers. Like the resistive technology, there are several ways
to detect and process touch information with capacitive screens. In one of them, the
screen assembly consists of a rigid and insulating glass plate glued to the screen that
displays the image and on which two plastic layers are placed. On the top surface of
the glass plate, parallel metallic lines are made that form the sensing lines. The first
layer of insulating plastic is glued to the glass and has on the top surfacemetallic lines
oriented perpendicular to the lines on the glass, forming a matrix. The second layer
is also a plastic one and serves to protect the system. The intersection of the lines in
the glass and in the plastic forms parallel plate capacitors in which the insulator is
the plastic layer itself. Capacitors are kept charged by a voltage applied to the plastic
lines. When the user touches the screen with the finger, another capacitor is formed
in the touched region, since the finger conducts electricity. This produces a variation
in the capacitor charge in the region, resulting in an electric signal that is processed
by the sensor line circuit indicating the position and characteristics of the touch. An
advantage of the capacitive touchscreen is that it transmits about 90% of the light of
the image produced on the screen, while the resistive screen transmits about 75%.
Note that the operation of the capacitive screen requires the user to touch it with the
finger or some object that conducts electricity. It does not work if the user is wearing
a rubber glove or using an insulating touch object, such as an ordinary plastic pen.

10.4 Superconducting Materials

Superconducting materials are those with negligible resistance to electric currents.
Superconductivity is observed in certain metal elements or alloys, at tempera-
tures below a critical value Tc. This phenomenon was discovered in 1911 by the
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Fig. 10.37 Variation of the
resistance of a sample of
mercury with temperature,
measured by Kamerlingh
Onnes in 1911

Dutch physicist Kamerlingh Onnes, who had managed to liquefy helium three years
earlier.Whenmakingmeasurements of the electric resistance of materials around the
temperature at which helium undergoes a transition from the gas to the liquid phase
(4.2 K), he observed that the resistance of mercury dropped sharply to negligible
values at a certain temperature Tc ≈ 4.2 K. A reproduction of the original plot made
by Kamerlingh Onnes is shown in Fig. 10.37.

In the following years, Onnes discovered that, even at T < Tc, superconduc-
tivity was destroyed and the resistance had normal values when the material was
subjected to a magnetic field of intensity above a critical value Hc. He also observed
that superconductivity was destroyed with the passage of an electric current with a
density above a critical value Jc. From then on, countless laboratories and researchers
all over the world began to investigate the electric and magnetic properties of mate-
rials, in search for new superconductors with higher critical temperatures. On the
other hand, theoretical physicists started to seek an explanation for the unusual
phenomenon. Onnes was awarded the Physics Nobel Prize in 1913 for the discovery
of superconductivity.

Early studies in the field revealed that several simplemetalswere superconducting,
all with low Tc values. Onnes himself observed the superconductivity in lead (Pb) in
1913, with Tc = 7.2 K. The highest critical temperature in a simple metal, niobium
(Nb), with Tc = 9.2 K, was observed in 1930. Then, the investigations turned to
alloys and intermetallic compounds, and various Nb compounds were discovered
with higher Tc. However, until 1986, the highest known critical temperature was
23.2 K, observed in Nb3Ge. That year, Alex Müller and Georg Bednorz, researchers
at the IBM laboratory in Zurich, observed superconductivity in ceramic LaBaCuO,
with critical temperature Tc ≈ 30 K. This discovery revolutionized the field of super-
conductivity and stimulated researchers to look for superconductivity in new classes
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Fig. 10.38 Variation of
YBa2Cu3O7 resistivity with
temperature measured by
Chu. Reproduced with
permission from P. Chu
et al., Physical Review
Letters 58, 908 (1987).
Copyright (1987) by the
American Physical Society

of materials still unexplored. Müller and Bednorz were awarded the Physics Nobel
Prize in 1987 for their seminal discovery.

Shortly after Müller and Bednorz’s discovery, Paul Chu observed superconduc-
tivity in a ceramic material with chemical formula YBa2Cu3O7, known by the
acronym YBaCuO, with Tc = 92 K. Figure 10.38 shows the measurement of the
electric resistivity of this compound as a function of temperature, measured by Chu.
The importance of Chu’s discovery lies in the fact that YBaCuOwas the first material
to exhibit superconductivity at a temperature above 77 K. This is the temperature of
liquefaction of nitrogen, much higher than that of helium. Helium and nitrogen are
the most used cryogenic liquids to keep materials at temperatures much lower than
300 K.

Since it ismuch easier andmore economical toworkwith liquid nitrogen thanwith
liquid helium, the discovery of superconductivity in YBaCuO aroused the hopes of
practical application of superconductors. Since 1987, several other superconducting
cuprous oxides have been synthesized with critical temperatures above 77 K. The
stable material of highest known Tc at normal pressure is HgCa2Ba2Cu3O8, that
has Tc = 134 K. These materials are called high Tc superconductors. Table 10.5
presents the critical temperatures, critical fields and two important lengths that will
be explained in Sect. 10.4.2, for superconducting materials of different classes.

10.4.1 Magnetic Properties of Superconductors

Superconducting materials exhibit strong magnetic behavior at temperatures below
Tc. This was first observed by Meissner and Ochsenfeld, in 1933, who discovered
that simple metals which are superconductors have perfect diamagnetism at T < Tc.
They observed that when a superconductor is subjected to an external magnetic field
H, the induction field B is expelled from its interior as the temperature is lowered
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Fig. 10.39 Illustration of the
Meissner effect in a
superconducting sphere. The
induction field B is expelled
from inside the sphere at
T < Tc

below Tc. This phenomenon, illustrated in Fig. 10.39, known as Meissner effect,
occurs only for fields with intensity H < Hc, because above Hc the material is in the
normal state at any temperature. Since �B = μ0( �H + �M), the Meissner effect implies
that, at T < Tc and H < Hc,

�B = − �M, (10.31)

inside the superconductor. The magnetization in the superconductor does not
originate from atomic magnetic dipoles, as in magnetic materials. It results from
macroscopic currents, induced in the superconductor by the application of the
magnetic field, called supercurrents. Supercurrents are induced by the Faraday
effect, and since the material resistance is negligible, they persist for a long time. In
purematerials they can last up to thousands of years. Due to Lenz’s law, supercurrents
have a sense such as to counteract the magnetic field, and for that reason they create
an effective magnetization in opposition to the field. Actually, only superconductors
made of simple metals have magnetization given by Eq. (10.31) in the entire range
H <Hc. These materials, called type I superconductors, have magnetizationM that
varies with H as in Fig. 10.40a.

Fig. 10.40 Variation of the magnetization with the applied magnetic field H in superconducting
materials. a Type I. b Type II
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There is another class of materials, called type II superconductors, in which M
= −H only for H fields smaller than a value Hc1. In these materials there are two
critical fields, Hc1 and Hc2. The field Hc2 is the value above which the material is no
longer superconducting, that is, it has normal resistance, whileHc1 is the field below
the which the material is perfectly diamagnetic.

In type II superconductors, the variation of M with H has the shape shown
in Fig. 10.40b. Thus, the magnetic behavior is characterized by three distinct
phases: H < Hc1, the Meissner phase, the material is completely diamag-
netic (M = −H); For H > Hc2, we have the normal phase, in which
M = 0 and the resistance is normal; For intermediate fields, Hc1 < H < Hc2, there
is a mixed phase, in which the magnetic behavior is more complex. In this phase
the material is diamagnetic, but the diamagnetism is not perfect, that is, |M| < |H|
because the expulsion of the B field from the interior of the material is not complete.
As shown in Fig. 10.41, some induction lines remain inside the material, confined
to tiny filaments with diameter less that 100 nm, called vortices. In the filamentary
regions with the induction lines the material is in the normal state, while in the rest it
is in the superconducting phase. In the superconducting regions there are supercur-
rents circulating around the filaments, in order to maintain the field of the vortices.
For this reason the material is also said to be in a vortex state. Using concepts of
quantummechanics applied to superconductors, it is possible show that the magnetic
flux in each vortex, called a fluxoid, is given by

�0 = h

2 e
= 2.067 × 10−7 gauss cm2. (10.32)

Thus, the magnetic flux through a superconducting the material is quantized, and
is equal to a multiple of �0.

Type I superconductors are simple metals, consisting only of one chemical
element. As shown in Table 10.5, they have critical temperatures below 10 K and
critical fields of a few hundred oersteds. On the other hand, intermetallic compounds

Fig. 10.41 Behavior of the magnetic induction lines in the three magnetic phases of type II
superconductors
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Table 10.5 Parameters of some superconducting materials

Material Tc (K) Hc (kOe) λL (Å) ξ (Å)

Simple metals

Al 1.1 0.1 160 16,000

Sn 3.9 0.3 340 2,300

Pb 7.2 0.8 370 830

Nb 9.5 2.0 400 380

Alloys and binary compounds

Nb0.3Ti0.7 9.2 140 600 450

Nb3Al 18.5 325 – –

Nb3Sn 18.1 240 800 35

Nb3Ge 23.2 380 –

High Tc cuprous oxides

YBa2Cu3O7 92 ~1,500 4,000 ~10

Bi2Ca2Sr2Cu3O10 110 ~2,500 ~6,000 ~10

Tl2Ca2Ba2Cu3O10 125 >1,300 – ~13

HgCa2Ba2Cu3O8 134 >1,500 – ~13

and cuprous oxides are type II superconductors, with higher critical temperatures. In
this case, the critical fields presented in Table 10.5 are those in which superconduc-
tivity is destroyed, that is,Hc2.We see that the critical fields in type II superconductors
are considerably higher than in type I superconductors. This is the main reason why
type II superconductors are more important technologically than type I.

The critical field values presented in Table 10.5 are valid at T = 0 K. Actually,
the fields Hc, Hc1, and Hc2 vary with temperature. As shown in Fig. 10.42, the
critical fields decrease with increasing temperature, so that the fields that destroy
the superconductivity decrease at larger temperatures. The phase diagrams shown in

Fig. 10.42 Variation of critical fields with temperature in typical superconductors. a Pb, type I.
b Nb3Sn, type II
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Fig. 10.42 for typical superconductors, Pb and Nb3Sn, have shapes that are similar
to all type I and type II superconductors.

10.4.2 The Physics of Superconductivity

The superconductivity of materials was one of the most intriguing and challenging
physical phenomenon of the twentieth century. Since its casual discovery in 1911,
it attracted great interest of experimental and theoretical physicists, in the search
for new superconducting materials and the theoretical explanations for the observed
phenomena. In 1934 Hans and Fritz London announced a phenomenological theory
that explained the Meissner effect. However, two more decades of work were neces-
sary until the formulation of a convincing microscopic theory was formulated, as
announced in 1957 by John Bardeen, Leon Cooper, and Robert Schrieffer. The so-
called BCS theory was very successful in explaining various aspects of the supercon-
ductivity observed in several materials, and Bardeen, Cooper, and Schrieffer received
the Physics Nobel Prize in 1972 for their groundbreaking contribution.

The BCS theory seemed to solve the mysteries of superconductivity. However,
with the discovery of high Tc superconductors in 1986, it was realized that the BCS
theory did not explain the superconductivity of these materials, and, so far, they still
do not have a convincingmicroscopic theory. In this sectionwe shall present themost
important results of London’s theory and some notions about the basic mechanism
of the BCS theory.

The London theory for the behavior of themagnetic field is based on the equations
of electromagnetism and the basic property of superconductors, that is, zero resis-
tance. The model assumes that the electric current in the material is carried by two
types of particles, normal electrons, that are scattered by impurities or by phonons,
and superconducting particles, that do not suffer collisions. The component of the
current carried by the superconducting particles is called supercurrent. The equation
of motion of these particles in an electric field �E is

m
d�vs
dt

= q �E, (10.33)

where m, �vs , and q are, respectively the mass, velocity and charge of the supercon-
ducting particles. Denoting by ns the concentration of these particles, the current
density �J = nsq �vs obtained with Eq. (10.33) satisfies the following equation

d �J
dt

= nsq2

m
�E, (10.34)

Substitution of this expression for the electric field in Maxwell’s Eq. (2.3) leads
to
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∂

∂t

(
∇ × �J + nsq2

m
�B
)

= 0. (10.35)

Integrating this equation in time and considering that with �B = 0 there is no
current in the superconductor, we obtain.

∇ × �J + nsq2

m
�B = 0. (10.36)

This is the London equation, that relates the current with the magnetic field in
a superconductor. To obtain the field equation, we substitute (10.36) in Maxwell’s
Eq. (2.4). Considering that the fields do not vary in time (∂/∂t = 0) and the relation
�B = μ0 �H , valid for the microscopic field, we obtain

∇ × ∇ × �B + μ0
nsq2

m
�B = 0. (10.37)

Using known relations between differential operators and Eq. (2.2), we obtain the
equation that describes the variation of the �B field in a superconductor

∇2 �B = 1

λ2
L

�B, (10.38)

where

λL =
(

m

μ0nsq2

)1/2

(10.39)

is theLondon penetration length, or London length. Table 10.5 presents the values
of λL for some superconductors. Let us use Eq. (10.38) to calculate the variation of
the magnetic field in a semi-infinite superconductor, with a flat surface, illustrated
in Fig. 10.43. We assume that the field is uniform outside the material, x < 0, and
parallel to the surface, �B = ẑ B0. Since Bz only varies in the x direction, Eq. (10.38)
at x > 0 reduces to

d2Bz(x)

dx2
= 1

λ2
L

Bz(x). (10.40)

The solution of this equation is

Bz(x) = C1 e
−x/λL + C2 e

x/λL . (10.41)

Since the field must be finite at x → ∞, it is necessary that C2 = 0. Due to
continuity on the surface at x = 0, C1 = B0. Therefore,
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Fig. 10.43 Illustration of the
variation of the magnetic
induction field B in a
superconductor. The field is
practically confined to a
superficial layer of thickness
λL

Bz(x) = B0 e
−x/λL . (10.42)

Thus, the external magnetic field applied to the superconductor penetrates only
in a layer of thickness λL on the surface, and decays exponentially to zero inside the
material. Since λL is in the range 50–500 nm, the layer is very thin, so that the field
barely penetrates inside. This result explains the Meissner effect.

At the time of its publication in 1934, London theorywas greetedwith enthusiasm,
but soon it was realized that it had a phenomenological character that explained
only one aspect of superconductivity, the Meissner effect. However, the BCS theory
announced two decades later, explains microscopically the zero resistance of super-
conductors and is entirely quantum.Understanding theBCS theory requires advanced
knowledge of quantum mechanics and statistical mechanics, which is beyond the
level of this book. However, some quite elementary notions of the mechanism of
superconductivity can be understood qualitatively.

The first important concept in the BCS theory is that of Cooper pairs. Under
certain conditions, in a crystal lattice, two electrons forming a bound pair have less
energy than they would have if they were independent. Since electrons have charges
with the same sign, they suffer electrostatic repulsion. Thus, the formation of a pair
requires the existence of an attractive interaction by some other mechanism. Using
quantum theory, Cooper showed in 1956 that the interaction between electrons and
phonons in a crystalline lattice can produce an attractive interaction between electrons
and result in the formation of pairs. Figure 10.44 illustrates qualitatively how this is
possible. When an electron travels in a lattice in equilibrium (T = 0 K), the ions of
the lattice around it are disturbed slightly, due to the electrostatic interaction. Thus,
upon reaching a certain point, the electron e1 momentarily attracts neighboring ions.
This produces a vibration wave in the lattice, that is, a phonon. This wave propagates
in the lattice and can produce, at another point, a displacement of ions in the sense
of creating an attractive potential for another electron e2. If the energy of this pair is
lower than that of the two independent electrons, they will form a bound state, called
Cooper pair. The size of this pair is characterized by a distance ξ, called coherence
length. The electrons that participate in this process have states close to the Fermi
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Fig. 10.44 Simple illustration of the attractive interaction between two electrons by means of
perturbations in the crystal lattice. This the basic mechanism for the formation Cooper pairs

surface, and have the Fermi velocity vF . It can be shown that the coherence length is
given by

ξ = � vF
π �

, (10.43)

where � is the energy reduction that an electron undergoes in the formation of the
Cooper pair. This energy is of the order of some meV, which is a typical phonon
energy. Table 10.5 shows the values of ξ for some superconductors. We see that in
traditionalmaterials, ξ ismuch larger than the distance between neighboring atoms in
a crystal lattice. This means that two electrons can establish an attractive interaction
and form a pair, having a large number of ions between them.

Actually, this view of the formation of Cooper pairs is extremely simplified.
As mentioned earlier, the interaction between electrons through the phonons is an
eminently quantum phenomenon. Its description is made in momentum space, and it
canbe shown that the twoelectrons in the pair haveoppositewavevectors, �k and−�k, as
well as opposite spins. The Cooper pairs with charge q= −2e andmassm= 2m0, are
the particles that produce the supercurrent. In the supercurrent, the Cooper pairs have
a collective drift motion. So, while normal electrons move individually undergoing
scattering by phonons and impurities, the pairs move collectively, without colli-
sions. Therefore, the superconducting state results from the ordering of conduction
electrons in pairs that are formed to decrease the total energy of the system.

The BCS theory explains why the superconducting state can be destroyed by an
increase in temperature, or by the application of a magnetic field. The thermal energy
resulting from an increase in temperature causes the effective binding energy of a
Cooper pair to decrease with temperature, as shown in Fig. 10.45. Note the similarity
between the curve in this figure and that of the variation with temperature of the
magnetization in a ferromagnet shown in Fig. 9.4. This similarity is not accidental.
The binding energy is the order parameter of the superconductor, and therefore has
a certain analogy with the spontaneous magnetization of the ferromagnet. In both
cases the thermal energy is equal to the ordering energy at the critical temperature
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Fig. 10.45 Variation with
temperature of the binding
energy of Cooper pairs in
superconductors

Tc, where a phase transition occurs. Below this temperature the order dominates and
the collective phenomenon is established.

The destruction of superconductivity with the application of a magnetic field
higher than a critical value is explained by the nature of the electrons in the Cooper
pairs. As mentioned earlier, the two electrons in the pair have opposites spins. Thus,
since the magnetic field tends to align the spins in its direction, the increase in
H tends to break the pair, which occurs for H > Hc. Thus, it is expected that the
field Hc varies with temperature in a way similar to the binding energy. This is
the reason for the similarity between Figs. 10.42 and 10.45. The BCS theory for
the zero resistance applies to both type I and type II superconductors. However the
mechanisms for the magnetic behavior are different in the two types. The full theory
for type II superconductors was developed by the soviet physicicts, Vitaly Ginzburg,
Lev Landau, Alexei Abrikosov, and Lev Gorkov. Landau received the Physics Nobel
Prize in 1962 for the theory of superfluidity, while Ginzburg and Abrikosov were
awarded the Physics Nobel Prize in 2003 for their work in superconductivity.

The magnetic behavior of superconductors, and therefore their classification as
type I or II, is directly associated with the relationship between the two relevant
lengths in the theory, λL and ξ. Type I superconductors have ξ ≥ λL, because they
must have a distance between the electrons in the Cooper pairs (ξ ), and therefore
the spatial length of the superconducting state, larger that the characteristic distance
of the magnetic field variation (λL). Notice in Table 10.5 that this is the case of
simple metals Al, Hg and Pb. On the other hand, type II superconductors have
ξ ≤ λL, because in this case the field penetrates the material at distances larger
than the length of the superconducting state. Thus, the material is characterized by
normal regions, in the form of filaments of radius ξ, crossed by field lines, which
are the vortices. This is the case of binary compounds and high-Tc superconductors,
listed in Table 10.5. Note that despite being a simple metal, Nb has a behavior closer
to type II superconductors.

To conclude this section, it is important to mention that the mechanisms
responsible for the superconductivity in high-Tc materials are still not completely
understood. It is known that the supercurrent is produced by particles of charge
q = −2e, and therefore the superconducting state is formed by pairs of electrons, as
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in traditional materials. However, there are several experimental evidences that the
formation of Cooper pairs is not mediated by phonons. This is consistent with the
fact that these materials have a coherence length comparable to the lattice parameter,
as shown in Table 10.5. In this situation it is expected that the attractive interaction
between electrons is mediated by some mechanism of local interaction, which is not
the case with vibration waves. So far, this mechanism has not been identified in all
details.

10.4.3 Junctions with Superconductors

Chapters 5 and 6 presented various types of junctions of differentmaterials, involving
semiconductors, metals and insulators. In all cases the behavior of the current at the
junction as a function of the applied voltage is determined by the properties of the
particles responsible for the current. Since in superconductors these particles are
electron pairs, it is to be expected that the junctions involving these materials have
different properties than those previously studied.

To analyze the junctions with superconducting materials, it is necessary initially
to understand certain properties of the conduction electrons. To form the Cooper
pairs in the superconducting state, the energy of the electrons is reduced by a value
�. Since the electrons that form pairs are those that are close to the Fermi surface
in momentum space, this reduction produces an opening in the curve of the density
of states around the energy EF . Figure 10.46 shows the density of electronic states
D(E) as a function of the energy in a superconductor. The dashed line represents
D(E) in the normal metal at T > Tc, as in Fig. 4.10. At T < Tc there is a reduction
of � in the energy of the pairs and a corresponding increase � in the energy of the
states with E > EF , so that the energy gap becomes Eg = 2�. At T = 0 only states
with energy less than EF − � are occupied. At T > 0, some electrons have enough

Fig. 10.46 Density of
electronic states D(E) in a
superconductor
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Fig. 10.47 NIS junction. a One-dimensional model. b Energy diagrams in the metal and in the
superconductor. c I-V characteristics of the junction

thermal energy to go to the upper branch of the curve, breaking the corresponding
Cooper pairs. Notice that the origin of this energy gap is entirely different than the
one in insulators. While in insulators the gap is due to the interaction of electrons
with the atoms or ions of the lattice, in a superconductor it originates in the attractive
interaction of electrons above the Fermi level mediated by phonons.

Now consider a NIS junction formed by a normal metal (N), separated from a
superconductor (S) bymeans of a thin insulating layer (I), as illustrated in Fig. 10.47a.
If the thickness of the insulating layer is of the order of 10 nm or larger, the potential
barrier prevents the flow of electrons from the N side to the S side, and vice-versa.
However, if the layer is sufficiently thin (∼1–2 nm), there is a significant probability
that electrons on one side will go to the other side by means of the tunnel effect.
For this to occur, it is necessary to have occupied states on one side and unoccupied
states on the other side with the same energy.

As can be seen in Fig. 10.47b, this does not happen in equilibrium. One needs to
apply a voltage V to the junction, in either direction, to make the energy diagram on
one side go up, or go down, relative to the other side, by a value of eV. Thus, only if
V ≥ Eg/e, the tunneling current I will increase significantly. The variation of I with
V in the NIS junction is shown in Fig. 10.47c.

Another important junction is the SIS, made of two superconductors separated
by a thin insulating layer. In this case, if the superconducting material is the same
on both sides, the energy diagram has the shape shown in Fig. 10.48a. In order for
isolated electrons to go from one side to the other, there must be occupied states on
one side, with the same energy as unoccupied states in the other side. Thus, when the
voltage applied to the junction is V ≥ Eg/e, there is a tunneling current of isolated
electrons, as indicated in Fig. 10.48b. However, even with V = 0, there is a current
with maximum value I0, produced by tunneling of Cooper pairs. This phenomenon
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Fig. 10.48 Superconductor-insulator-superconductor (SIS) junction. a Energy diagram. b I-V
characteristic, showing the dc Josephson effect at V = 0

is called dc Josephson effect, in honor of the British physicist Brian Josephson,
who theoretically predicted it in 1962 in his Ph.D. thesis. The current at V = 0 is of
a quantum nature, and can flow in either direction. Its value depends on the phase
between the wavefunctions of the superconducting state in the two sides. The SIS
junction is also known as Josephson junction.

At the SIS junction there is another important phenomenon, called ac Josephson
effect. The application of a constant voltage V at the junction produces an alternating
current, with frequency

f = 2 e

h
V = V

�0
, (10.44)

where �0 is the quantum of magnetic flux, given by Eq. (10.32). This phenomenon,
also of quantum nature, results in an oscillation of the Cooper pairs current due to
the variation in the phase of the wavefunction on one side of the junction relative to
the other. For V = 0.1 mV, the frequency given by Eq. (10.44) is 48.36 GHz, located
in the microwave region.

10.4.4 Some Established Applications of Superconductors

The most important technological applications of superconducting materials at the
moment are concentrated in equipment that use intense magnetic fields. These fields
are generated by coils made of superconducting wires with a large number of turns.
Since the resistance of the wire is very small, it can carry a high current to generate an
intense field, with very small heating. The superconducting coils are routinely used
in laboratory electromagnets, in medical equipment for nuclear magnetic resonance
tomography, and in high-power motors and generators. In general, they are made
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with multifilament thin wires of Nb-Ti or Nb3Sn, that have critical field Hc2 of 150
and 240 kOe, respectively, and critical currents on the order of 105 A/cm2. The
superconductor coils are commercialy made for fields in the range 100–200 kOe.
They operate immersed in a liquid helium bath to maintain the low temperature and
ensure that thewire remains in the superconducting phase. For this reason, equipment
using superconducting coils are bulky and have high cost. High Tc superconductors
are not yet used in these applications because they are brittle, and therefore difficult
to handle for make windings. Furthermore, in the ceramic form they do not have
sufficiently high critical currents.

Superconducting materials still do not have routine applications in electronic
devices, mainly because of the need to operate at low temperatures. A possible
potential application is in high integration circuits of electronic devices, in which
the reduction of the component physical dimensions limits the dissipation of thermal
energy. In this case, the replacement of themetallic films of the contacts and intercon-
nections between the components by superconducting films would allow a further
reduction in the device dimensions. In some situations, the use of superconducting
films in these devices can be advantageous, even with the need to keep them at low
temperature.

The junctions of superconductors also have potential application in specific
electronic equipment. The Josephson junction, with the I-V characteristic in
Fig. 10.48, presents a behavior with two different current states: I ≈ 0 for V <
Eg/e; I > 0 for V > Eg/e. In superconductor junctions, the switching from one state to
the other is very fast, with picosecond time intervals (10−12 s), and with power dissi-
pation of the order of pW. These features make Josephson junctions very attractive
for digital applications, in logic circuits and in fast computer memories. Again, the
main difficulty with this technology is the need to operate at low temperatures.

The ac Josephson effect has an important application inmetrology. The traditional
standard for voltage is an electrochemical battery, known as Weston cell. This cell
has a voltage of 1.018 V and stability around 1 ppm. With this effect, it is possible to
convert voltage into frequency, and vice versa, with great precision in the measure-
ment of frequency. This is used in a voltage standard with precision and stability
about 100 times higher than the Weston cell.

Another application of the Josephson junctions is in devices known as SQUID, a
word formed by the initial letters of Superconducting Quantum Interference Device.
The SQUID device is made of two Josephson junctions in parallel, as in Fig. 10.49.
The current I that enters the device is divided into two components, which flow
through the two Josephson junctions in the form of Cooper-pair currents. In this
case, it can be shown that the dependence of each current on the phases of the
wavefunctions on both sides results in a current that varies with the magnetic flux �

across the circuit contour in the form

I = I0 |cos(π �/�0)|, (10.45)
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Fig. 10.49 SQUID device. a Schematic of the connection of the Josephson junctions. b Variation
of the current with the magnetic flux through the device

where �0 is the quantum of magnetic flux, given by Eq. (10.32). This result shows
that when the SQUID is subjected to a magnetic field, the current varies periodically,
going through consecutive maxima as the flow passes by multiples of the quantum
�0, as illustraded in Fig. 10.49b. Then, by means of a digital counter circuit, it
is possible to count the number of maxima that the current goes through, so as to
determine the final flux. We see from Eq. (10.45) that if the circuit has an area 1 cm2,
the field corresponding to a quantum�0 is B≈ 2× 10−7 gauss. This extremely small
value (the Earth’s magnetic field is about 0.5 gauss) allows the SQUID device to be
used to measure magnetic fields with great sensitivity and precision. The SQUID
magnetometers are routinely used in scientific, medical, and industrial equipment.

10.4.5 Superconducting Devices for Quantum Computing

To conclude this chapter, and the book, we present a promising application of super-
conducting devices in quantumcomputers.Quantumcomputing is the use of quantum
phenomena such as superposition and entanglement of quantum states to store and
process information. Quantum computers are expected to be able to solve certain
specific problems much faster than classical computers that operate with classical
bits. There are several models of quantum computing systems, but the most widely
used is the quantum circuit, based on the quantum bit, known as qubit.

In classical digital computers, all information is represented by a sequence of
binary digits, characterized as 0 or 1. These bits are stored by means of a charge,
or its absence, in a semiconductor memory device, or by the magnetization in one
direction, or in the opposite, in a magnetic medium. The bits are processed by means
of a low voltage signal with two levels, that is sent from one logic circuit to another
in the central processing unit (CPU), or from the CPU to a memory unit. It turns out
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that a set with N bits (a register) has 2 N possible states in the range {0…00, 0…01,
0…10,…,1…11}. Thus, a 200-bit memory can store any of 2200 possible bit strings,
a set so large that it is physically impossible to deal with. However, while a 200-bit
register can assume any of its 2200 possible states, we know that each bit is either
zero or one, so at any given time the register can store only one of the bit strings.

In a quantum computer, the basic information is represented by a qubit. Just like
a regular bit, a qubit has a zero (ground) state and a one (excited) state. However,
what distinguishes a qubit from a classical bit is that it can be in a superposition of
its 0 and 1 states, so that the number of possible states is very large. Mathematically,
the state of a qubit is described by a 2D complex state vector of unit amplitude, that
can be written as

|ψ〉 =
(

α

β

)
= α|0〉 + β|1〉. (10.46)

This plays the role of a wavefunction, where the first notation is a matrix represen-
tation, and the second is in the Dirac notation, where the symbol | 〉 represents a ket
vector, or simply ket. The coefficients α and β are complex numbers corresponding
to the probability amplitudes of finding the state in one of the basis vectors, 0 or 1.
Since the vector has unit amplitude, the coefficients are constrained by

|α|2 + |β|2 = 1. (10.47)

Note that a qubit in the superposition state given by (10.46), does not have a value
between 0 and 1. Rather, when measured, the qubit has a probability |α|2 of having
the value 0, and a probability |β|2 of the value 1. In other words, superposition
means that there is no way, even in principle, to tell which of the two possible
states forming the superposition state actually pertains. Furthermore, the probability
amplitudes, α and β, encode more than just the probabilities of the outcomes of
a measurement. They also have relative phases, that are responsible for quantum
interference. The great advance of using qubit instead of binary digits, is that with
two bits and two probability densities, it is possible to represent a very large number
of states. Besides the huge advantage in the representation of the information, the
processing on a quantumcomputer is typically carried out as an in-memory operation.
That is, rather than moving data from the memory to a CPU and back, the quantum
register is operated upon directly. These two features give quantum computing a
massive computation capacity.

In a quantum computer the set of qubits are produced by some initialization
method, that depends on the physical circuits, and are processed in circuits consisting
of quantum logic gates. Mathematically, the qubits undergo a (reversible) unitary
transformation described by a matrix operation that preserves the qubits unit ampli-
tudes. These gate operations must be fast relative to the qubit coherence time. Since
a quantum computation consists of a series of gate operations, it is critical that the
individual processes be carried out on a timescale orders of magnitude shorter than
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the coherence time of the individual qubits. Another requirement for a quantum
computer is to have a method to measure the state of individual qubits to determine
the solution of some computation in a reliable manner. The measurement is an irre-
versible operation that contributes to the loss of qubit coherence, so it must employ
a very efficient mechanism to minimize interference in the processing.

Several qubit technologies have been used tomanufacture the circuits for quantum
computers. The main requirements of these technologies are: have a physical two-
level quantum-mechanical system that can be used to represent qubits with suffi-
ciently long coherence times; have the ability to control large arrays of qubits and
an efficient manner for the qubits to interact with external controls; be scalable. The
main physical systems used for implementation of qubits are nuclear spins of some
isotopes, such as 31P, electronic spins in cold atoms, in doped semiconductors, in
trapped ions, and in quantum dots, single-photon polarization in integrated photonic
devices, as well as in superconducting circuits.

Quantum computing with superconducting circuits are made mainly with flux
qubits, also known as persistent current qubits. They consist of micrometer sized
loops of a superconducting metal that is interrupted by one or more Josephson junc-
tions. During fabrication, the junction parameters are engineered so that a persistent
current will flow continuously when an external magnetic flux is applied. Only an
integer number of flux quanta are allowed to penetrate the superconducting ring,
resulting in clockwise or counter-clockwise mesoscopic supercurrents (typically
300 nA) in the loop, representing bits 0 or 1. When the applied flux through the loop
area is close to a half-integer number of flux quanta, the two lowest energy eigenstates
of the loop will be a quantum superposition of the clockwise and counter-clockwise
currents, that is, a superposition of the two bits. The two lowest energy eigenstates
differ only by the relative quantum phase between the composing current-direction
states. Higher energy eigenstates correspond tomuch larger (macroscopic) persistent
currents, that induce an additional flux quantum to the qubit loop, thus are well sepa-
rated energetically from the lowest two eigenstates. This separation, known as the
qubit nonlinearity criteria, allows operations with the two lowest eigenstates only,
effectively creating a two-level system. Usually, the two lowest eigenstates will serve
as the computational basis for the logical qubit.

Initializations and computational operations are implemented by pulsing the qubit
with microwave pulses of frequency corresponding to the energy difference between
the two basis states. Properly selected pulse duration and strength can put the qubit
into a quantum superposition of the two basis states, while subsequent pulses can
manipulate the probability weighting that the qubit will be measured in either of the
two basis states, thus performing a computational operation.

Flux qubits are fabricated using techniques similar to those used to make semi-
conductor integrated circuits. The devices are usually made on silicon or sapphire
wafers using electron beam lithography andmetallic thin film evaporation processes.
To create Josephson junctions, a technique known as shadow evaporation is normally
used. This involves evaporating the source metal alternately at two angles through
the lithographically defined mask in the electron beam resist. The process results in
two overlapping layers of the superconducting metal, such as aluminum, between
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which a thin insulating layer of aluminum oxide is deposited, forming a Josephson
junction.

The efficient coupling between qubits is essential for implementing many qubit
gates. The coupling can be made in several ways. An example of a device with
inductive coupling between two flux qubits is shown by the images in Fig. 10.50.
In each qubit there are three Josephson junctions made as described in the previous
paragraph, in a circuit closed by means of a superconducting Nb microstructure.
The device is placed near the shorted end of a λ/4 microwave resonator used for
readout. The opposite open end of the resonator is capacitively coupled to an on-
chip coplanar waveguide. The circulating currents of the qubits inductively affect
one another, clockwise current in one qubit induces counter-clockwise current in the
other. This enables the implementation of a NOT gate operation.

Several circuits with Josephson junctions have been used to implement qubits in
some successfully developed prototypes of quantum computers. This technology is
attractive because the low dissipation inherent to superconductors enables, in prin-
ciple, long coherence times. In addition, because complex superconducting circuits
can be microfabricated using integrated-circuit processing techniques, scaling to a
large number of qubits is relatively straightforward. Currently there is a worldwide
race tomanufacture quantumcomputers, and somefirstmodels have been announced.
The reason for the race is that quantum computers are believed to be able to quickly
solve certain problems that no classical computer could solve in any feasible amount
of time, a feat known as “quantum supremacy.”

Fig. 10.50 Images of a quantum computer device with two coupled flux qubits. a λ/4 microwave
resonator capacitively coupled to the transmission line. b Optical picture of the two composite
Nb/Al flux qubits placed near the shorted end of λ/4 resonator. The Nb part of the left qubit contains
the π-junction. Right qubit has Nb “via” structure forming a superconducting short. The yellow
circles mark the positions of aluminum Josephson junctions. Reproduced with permission from A.
V. Shcherbakova et al., Supercond. Sci. Technol. 28, 025,009 (2015)



482 10 Other Important Materials for Electronics

Problems

10.1 A parallel plate capacitor with a tantalum oxide insulator of thickness 1 μm
has capacitance C = 1.0 μF:

(a) Calculate the maximum voltage that can be applied to the capacitor;
(b) Calculate the free charge density and the polarization charge density

when the applied voltage is 10 V.

10.2 Ten PZT disks of thickness 1 mm are stacked to form a micropositioner.
The disks are placed on top of each other, with alternating polarities, and
separated by a copper sheet for application of the voltage. The terminals
of the sheets are interconnected so that all disks are subjected to the same
external voltage, alternately, so that the stack expansion is the sum of the
disk expansions. Calculate the variation in the length of the micropositioner
when subjected to a voltage of 100 V.

10.3 Calculate the thickness of aX-cut quartz plate, used to stabilize the oscillator
of the transmitter in a radio station with frequency 720 kHz.

10.4 The unit cell of BaTiO3 has a lattice parameter of 4.0 Å and electric dipole
moment p = 1.66 × 10−29 Cm due to a small spontaneous displacement of
the Ti4+ ions. Estimate the value of the piezoelectric constant of this material
and compare with the data in Table 10.2.

10.5 Show that in aMach-Zehnder type electro-opticmodulator, the transmission
is given by Eq. (10.29).

10.6 An electro-optic modulator of the Mach-Zehnder type with waveguides of
Ti:LiNbO3 has electrodes 5 mm long and 5 μm apart. Calculate the voltage
required to produce the cut-off in a modulation of the type on-off.

10.7 In an isotropic liquid, the molecules can assume any direction in space with
equal probability. Show that the integral in three dimensions of the angular
factor in Eq. 10.30 is zero in this situation.

10.8 In the superconducting vortex state, each vortex has a flux�0. Calculate the
number of vortices per cm2 in a material when the magnetic field through it
is 5 T.

10.9 Calculate the London penetration length for a simple metal with ns = 1023

cm−3, m = 2m0, and q = −2e, and compare with the data in Table 10.5.
10.10 What voltage is needed to produce an oscillation with frequency 100 GHz

in a Josephson junction?
10.11 A SQUID magnetometer has a detector with area 2 cm2. What is, in gauss

and in tesla, the smallest variation in the magnetic field that can bemeasured
by the magnetometer?
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Appendix A

Perturbation Theory

Calculation of the Transition Probability

In this appendix we present the calculation of the transition probability per unit time
for a quantum system, initially in a state n, to go to another state m, due to some
perturbation. The calculation is based on the theory of time-dependent perturbation
studied in Sect. 8.3.1. As shown in that section, the quantum state of a system with
Hamiltonian H = H0 + H(t) is described by a wave function �(t), which can be
expanded as in (8.48)

�(t) =
∑

n

an(t)ψne
−i En t/�, (A.1)

where ψn are the eigenfunctions of the constant part of the Hamiltonian, H0, with
energies En. Since the wavefunctions ψn are known, to determine the evolution of
the system subjected to an excitation variable in time represented by the Hamiltonian
H′(t) = H′ exp(−iωt), it is necessary to obtain the coefficients an (t). The starting
point is Eq. (8.51)

dam
dt

= 1

i�

∑

n

an(t)H
′
mn e

i(ωmn−ω)t (A2)

where ωmn = (Em − En)/�. Note that this result is exact, since no approximation
has been made so far. The problem is that Eq. (A.2) cannot be resolved analytically
exactly for a general perturbation. To solve it approximately, we employ perturbation
theory. For this we consider that the Hamiltonian of the excitation in time is small
compared to the static Hamiltonian, that is, H′ �H0. Thus, the coefficients an(t) can
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be expanded in power series

an = a(0)
n + a(1)

n + a(2)
n + · · · , (A.3)

where a(0)
n is the value that an would have if H′ = 0, a(1)

n is the first-order term in H′,
a(2)
n is the second-order term, etc. Substitution of Eq. (A.3) into (A.2) gives

ȧm = ȧ(0)
m + ȧ(1)

m + ȧ(2)
m + · · · = 1

i�

∑

n

(
a(0)
n + a(1)

n + a(2)
n + · · ·)H′

mn e
i(ωmn−ω)t .

(A.4)

Equating the terms of the same order on the right- and left-hand sides of this
equation we obtain

ȧ(0)
m = 0

ȧ(1)
m = − i

�

∑

n

a(0)
n H

′
mn e

i(ωmn−ω)t

ȧ(2)
m = − i

�

∑

n

a(1)
n H

′
mn e

i(ωmn−ω)t

...

ȧ(s)
m = − i

�

∑

n

a(s−1)
n H

′
mn e

i(ωmn−ω)t (A.5)

The zero-order solution is obtained from the first equation, a(0)
m = constant. This

means that if there is no perturbation, the system remains in the initial stationary
state indefinitely. Assuming it is initially in state n we have

a(0)
n = 1,

a(0)
m = 0 m �= n

(A.6)

The first-order solution is obtained from the second equation in (A.5), which can
be written in the form

ȧ(1)
m = − i

�
H

′
mn e

i(ωmn−ω)t . (A.7)

Let us now consider that the excitation of the system is turned on only at a time t
= 0, that is, H′ = 0 for t < 0. Integration of (A.7) leads to
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a(1)
m (t) = − i

�

t∫

0

H
′
mn e

i(ωmn−ω)t ′dt ′ = − 1

�

[
H

′
mn

ei(ωmn−ω)t − 1

ωmn − ω

]
. (A.8)

Since �∗
m�m is the probability density of finding the system in the state m, it can

be seen that the probability of the system to undergo a transition from state n for
another state m is given by

∣∣a(1)
m

∣∣2 = 4
∣∣H′

mn

∣∣2

�2

sin2[(ωmn − ω)t/2]
(ωmn − ω)2

. (A.9)

As we know, the linewidth of the transition cannot be zero. So we shall consider
that n and m are actually two groups of states. Thus, the probability of the system to
be found in the group of m states is given by

∣∣a(1)
m

∣∣2 = 4

�2

∞∫

−∞

∣∣∣H
′
mn

∣∣∣
2
{
sin2[(ωmn − ω)t/2]

(ωmn − ω)2

}
D(ωmn)dωmn, (A.10)

whereD(ωmn) is the joint density of states associated with the two groups of statesm
and n. Note that the function of ωmn between the brackets has a value t2/4 for ωmn =
ω. When ωmn goes away from ω, this function oscillates with decreasing amplitude
due to the increase in the denominator. It is easy to see that the linewidth of this
function around ωmn = ω is approximately 2π /t. Thus, after a relatively large time t,
the function between the brackets has a small width in the region ωmn ≈ ω. Thus, the
density of states can be considered approximately constant with the value D (ωmn

= ω) in this region, so that it can be removed from the integral. Using the definite
integral

∞∫

−∞

sin2(xt/2)

x2
dx = π t

2
, (A.11)

we obtain

∣∣a(1)
m

∣∣2 = 2π

�2

∣∣∣H
′
mn

∣∣∣
2
D(ωmn = ω) t. (A.12)

Therefore, the probability per unit time for the system to undergo a transition
from the group of states n to the group of states m, given by

∣∣a(1)
m

∣∣2/t , becomes

Wn→m = 2π

�

∣∣∣H
′
mn

∣∣∣
2
D(Em = En + �ω) (A.13)
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where D(E) dE = D(ω) dω is the number of states with energy between E and E +
dE. This result is known as the Fermi golden rule, Eq. (8.53).
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Physical Constants and Table for Conversion of Energy Units

B1-Physical Constants

Quantity Symbol Value CGS SI

Electron mass m0 9.10956 10−28 g 10−31 kg

Electron charge e 1.60219 – 10−19 C

(modulus) 4.80325 10−10 esu –

Planck constant h 6.62620 10−27 erg.s 10−34 J.s

� = h/2π 1.05459 10−27 erg.s 10−34 J.s

Speed of light c 2.99792 1010 cm/s 108 m/s

Proton mass Mp 1.67261 10−24 g 10−27 kg

Boltzmann constant kB 1.38062 10−16 erg/K 10−23 J/K

Bohr magneton μB 9.27410 10−21 erg/G 10−24 J/T

Permittivity of vacuum ε0 – 1 107/4πc2 = 8.85 × 10−12

C2/Nm−2

Permeability of vacuum μ0 – 1 4π × 10−7 T.m/A
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B2-Conversion of Energy/Frequency Units

Hz cm−1 eV J K Oe*

Hz 1 3.3357 × 10−11 4.1357 × 10−15 6.6262 × 10−34 4.7994 × 10−11 3.5714 × 10−7

cm−1 29.979 × 109 1 1.2398 × 10−4 1.9865 × 10−23 1.4388 1.0707 × 104

eV 2.4180 × 1014 8.0655 × 103 1 1.6022 × 10−19 1.1605 × 104 8.6355 × 107

J 1.5092 × 1033 5.0341 × 1022 6.2414 × 1018 1 7.2431 × 1022 5.3898 × 1026

K 20.836 × 109 0.69502 8.6170 × 10−5 1.3806 × 10−23 1 7.4413 × 103

Oe* 2.80 × 106 9.3399 × 10−5 1.1580 × 10−8 1.8554 × 10−27 1.3438 × 10−4 1

To convert the value of a quantity expressed in the column unit on the left, to the corresponding unit to one of the columns,
multiply by the value in the corresponding row and column.
∗Calculated with γ = 2.8 MHz/Oe
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Periodic Table of the Elements
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387, 389, 394–396, 478, 479
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wall, 368
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Boltzmann distribution, 283
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277, 445
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Breakdown field, 427
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286, 292, 416
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C
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CaAs, 22
Cadmium, 446
CaF2, 349
CCD camera, 240
CCD image sensor, 293, 305, 306
CdS, 10, 111, 112, 296, 297, 339, 428
CdTe, 10, 111, 112, 268, 269, 289, 290, 306,

438
Capacitance, 163, 176, 177, 185, 191, 192,

225, 229, 231, 234, 235, 237, 248,
252, 425–427, 482

Capacitor, 2, 17, 176, 179–181, 185, 216,
226–236, 240, 245, 251–253, 255,
256, 297, 305–308, 318, 379, 396,
425–427, 432, 463, 482

Carbon, 10, 11, 15, 20, 21, 322, 376, 377,
390, 456–459

Carbon nanotube, 11, 20, 21
Carbon steel, 377
Carrier

concentration, 121–124, 127–130, 133,
137, 145, 204, 294

diffusion, 144
injection, 144
transport, 148

Cathode-ray tube, 448, 450
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primitive, 8, 9, 32, 35, 88–92
unit, 6–11, 22, 36, 91, 92, 98, 99, 105,
106, 256, 357, 365–367, 424, 433, 435,
482

Central processing unit, 478
Ceramic, 11, 14, 15, 367, 410, 421, 427, 430,

434, 445, 446, 448–450, 464, 465,
477
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conductance, 220, 259
depth, 236
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induction, 239
length, 257
resistance, 220

Charge-coupled device, 305, 306
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Chemical vapor deposition, 21, 252, 255
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